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Abstract

For a HilbertC∗-moduleX over aC∗-algebraA, we introduce a vector bundleEX associated to
X. We prove thatEX has an hermitian metric and a flat connection. We introduce a vector spaceΓX

of holomorphic sections ofEX with the following properties: (i)ΓX is a HilbertA-module, (ii) the
action ofA onΓX is defined by means of the connection ofA, (iii) the C∗-inner product ofΓX is
induced by the hermitian metric ofEX.

We prove that the HilbertC∗-moduleΓX is isomorphic toX.
This sectional representation is a generalization of the Serre–Swan theorem to non-commutative

C∗-algebras. We show thatEX is isomorphic to an associated bundle of an infinite dimensional
Hopf bundle with the structure groupU(1).
© 2003 Elsevier Science B.V. All rights reserved.

MSC:46L87

Subj. Class:Quantum mechanics; Non-commutative geometry

Keywords:Non-commutative geometry; Serre–Swan theorem; HilbertC∗-module

1. Introduction

The Serre–Swan theorem[8] is described as follows.

Theorem 1.1 (Serre–Swan).Let Ω be a connected compact Hausdorff space andC(Ω)

the algebra of all complex valued continuous functions onΩ.Assume thatX is a module over
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C(Ω). Then X is finitely generated projective iff there is a complex vector bundle E onΩ

such that X is isomorphic onto the module of all continuous sections of E.

By Theorem 1.1, finitely generated projective modules overC(Ω) and complex vector
bundles onΩ are in one-to-one correspondence up to isomorphisms. In non-commutative
geometry[5,11], some class of modules over a non-commutativeC∗-algebraA are treated
as vector bundles on a “non-commutative space”A, generalizing Serre–Swan theorem for
commutativeC∗-algebras.

On the other hand, for a unital general non-commutativeC∗-algebraA, there is a uniform
Kähler bundle(P, p, B) [3] unique up to equivalence class ofA, such thatA is ∗ isomorphic
onto a uniform Kähler function algebra on(P, p, B), what is a natural generalization of
Gel’fand representation. We carefully review the uniform Kähler bundle and the functional
representation of non-commutativeC∗-algebras inSection 2. Under the above consideration,
we state the following theorem which is a version of the Serre–Swan theorem generalized
to non-commutativeC∗-algebras.

Theorem 1.2. Let X be a HilbertC∗-module over a unitalC∗-algebraA, (P, p, B) the
uniform Kähler bundle ofA,Ku(P) theC∗-algebra of uniform Kähler functions onP and
f : A ∼= Ku(P) the Gel’fand representation ofA:

(i) There is a complex vector bundleEX on P with a hermitian metric H and a flat
connection D and a bundle mapPX from the trivial vector bundleX × P onP to EX
with dense image, at each fiber.

(ii) Let ΓX ≡ (PX)∗(Γconst(X × P)) ⊂ Γhol(EX), whereΓconst(X × P) is the set of all
constant sections ofX × P andΓhol(EX) is the set of all holomorphic sections ofEX.
ThenΓX is a HilbertKu(P)-module with the right∗-action

ΓX ×Ku(P) → ΓX,

(s, l) �→ s ∗ l ≡ s · l + √−1DXl
s ((s, l) ∈ ΓX ×Ku(P)),

and theC∗-inner product

H |ΓX×ΓX : ΓX × ΓX → Ku(P),

whereXl is the holomorphic part of the complex Hamiltonian vector field ofl ∈
Ku(P) ⊂ C∞(P) with respect to the Kähler form ofP.

(iii) Under an identificationf : A ∼= Ku(P), ΓX is isomorphic to X as a HilbertA-
module.

In Section 3.1, we introduce the atomic bundleEX of a HilbertC∗-moduleX, which is
a Hilbert bundle onP. We discuss its geometrical structure inSection 3.3. In Section 4.1,
we define a flat connectionD on the atomic bundle. InSection 4.2, we prove that any
connection on the atomic bundle defines a∗-action of the algebra of smooth functions on
P on the vector space of holomorphic sections ofEX. In Section 5, we give a proof of
Theorem 1.2.
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Here we summarize correspondences between geometry and algebra

where we call respectively, CG= commutative geometry as a geometry associated with
commutativeC∗-algebras, and NCG= non-commutative geometry as a geometry associ-
ated with non-commutativeC∗-algebras by following[4].

2. Preparation

2.1. Uniform Kähler bundles

We start from the geometric characterization of the set of all pure states and the spectrum
of aC∗-algebra[3]. Assume now thatE andM are topological spaces.

Definition 2.1. (E,µ,M) is called a uniform Kähler bundle if it satisfies the following
conditions:

(i) µ is an open, continuous surjection betweenE andM,
(ii) the topology ofE is induced by a given uniformity,

(iii) each fiberEm ≡ µ−1(m) is a Kähler manifold.

The local triviality of uniform Kähler bundle is not assumed.M is, in general, neither
compact nor Hausdorff.

We simply denote(E,µ,M) by E. For uniform spaces, see[2]. Any metric space is a
uniform space. Examples and relations with concreteC∗-algebras are given inExample 2.6.
Roughly speaking, the fibers of the uniform Kähler bundle taken into account the non-
commutativity of theC∗-algebra.

Definition 2.2. Two uniform Kähler bundles(E,µ,M), (E′, µ′,M ′)are isomorphic if there
is a pair(β, φ) of a uniform homeomorphismβ : E → E′ and a homeomorphismφ : M →
M ′, such thatµ′ ◦ β = φ ◦ µ and any restrictionβ|µ−1(m) : µ−1(m) → (µ′)−1(φ(m)) is a
holomorphic Kähler isometry for anym ∈ M. We call(β, φ) a uniform Kähler isomorphism
between(E,µ,M) and(E′, µ′,M ′).

For example, any Kähler manifoldN is a uniform Kähler bundle with a one-point set as
the base space. In the same way, the metric direct sum of Kähler manifolds{Ni}ni=1 is a
uniform Kähler bundle with an-point set as base space, endowed with the discrete topology.
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Any compact Hausdorff spaceX is a uniform space.X is a uniform Kähler bundle with
zero-dimensional fiber with itself as the base space[2].

We explain the non-trivial third example of uniform Kähler bundles as follows. LetA a
unitalC∗-algebra. DenoteP the set of all pure states ofA, endowed with thew∗-uniformity,
i.e. the uniformity which induces thew∗-topology. By the GNS representation ofA, there
is a natural projectionp fromP onto the spectrumB ofA, the set of all equivalence classes
of irreducible representations ofA. The projectionp is continuous whenB is endowed with
the Jacobson topology[10].

If A is commutative, thenP ∼= B ∼= “the set of all maximal ideals ofA” is a compact
Hausdorff space. In[3] the following results are proved.

Theorem 2.3 (Reduced atomic realization).For any unitalC∗-algebraA, (P, p, B) is a
uniform Kähler bundle.

Let (Hb, πb) be an irreducible representation belonging tob ∈ B. Thenρ ∈ P corre-
sponds [xρ] ∈ P(Hb) ≡ (Hb \ {0})/C×, whereρ = ωxρ ◦πb andωxρ denotes a vector state
ωxρ = 〈xρ|(·)xρ〉. ThenPb has a Kähler manifold structure induced by the bijection

τb : Pb → P(Hb), τb(ρ) ≡ [xρ]. (2.1)

The Kähler distancedb on a fiberPb ≡ P(Hb) is given by

db(ρ, ρ
′) ≡

√
2 arcos|〈xρ|xρ′ 〉| (ρ, ρ′ ∈ Pb),

which is the length of shortest geodesic arc betweenρ andρ′ in Pb.

Theorem 2.4. LetAi beC∗-algebras with associated uniform Kähler bundles(Pi, pi, Bi),
i = 1,2.ThenA1 andA2 are∗ isomorphic if and only if(P1, p1, B1) and(P2, p2, B2) are
isomorphic as uniform Kähler bundles.

By this theorem, the uniform Kähler bundle(P, p, B) associated withA is uniquely
determined up to uniform Kähler isomorphisms. From now on, we call itthe uniform
Kähler bundle associated withA.

2.2. A functional representation of non-commutativeC∗-algebras

We reconstructA from the uniform Kähler bundle(P, p, B) associated withA. Since
Pb ≡ p−1(b) ⊂ P is a Kähler manifold for eachb ∈ B, we can consider the fiberwise
smooth (= smooth inPb for eachb ∈ B) functions onP. Let

C∞(P) : the set of all fiberwise smooth complex valued functions onP.

For l ∈ C∞(P), we denoteXl the holomorphic Hamiltonian vector field ofl, defined by
the equation

ωρ((Xl)ρ, Ȳρ) = ∂̄ρl(Ȳρ) (Ȳρ ∈ T̄ρP) for ρ ∈ P, (2.2)
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whereω denotes the Kähler form onP (defined on each fiber),̄∂ the anti-holomorphic
differential operator onC∞(P) andT̄ρP denotes the anti-holomorphic tangent space ofP
atρ ∈ P. A product∗ onC∞(P) is defined by

l ∗ m ≡ l · m + √−1Xml (l,m ∈ C∞(P)). (2.3)

If the involution∗ is defined onC∞(P) by complex conjugation, then(C∞(P), ∗) becomes
a ∗-algebra with unit which is not associative in general. By using(2.2), the∗-product can
be written as follows:

l ∗ m = l · m + √−1ω(X̄l, Xm).

Let us introduce the Kähler bracket{·, ·} with respect toω, by

{l, m} ≡ ω(X̄l, Xm) + ω(Xl, X̄m) (l,m ∈ C∞(P)).

Then the following equality holds:

l ∗ m − m ∗ l = √−1{l, m} (l, m ∈ C∞(P)). (2.4)

Theorem 2.5 (Gel’fand representation of non-commutativeC∗-algebras).For a non-
commutativeC∗-algebraA, the Gel’fand representation

fA(ρ) ≡ ρ(A) (A ∈ A, ρ ∈ P),
gives an injective∗ homomorphism of unital∗-algebras:

f : A→ C∞(P), A �→ fA,

whereC∞(P) is endowed with the above defined∗-product. For a function l in the image
f(A) of the map f, set

‖l‖ ≡ sup
ρ∈P

|(l̄ ∗ l)(ρ)|1/2. (2.5)

This defines aC∗-norm on the associative∗-subalgebraf(A). By this norm, (f(A), ∗) is
isomorphic toA.

Furthermoref(A) is precisely the subsetKu(P) ⊂ C∞(P) defined by

Ku(P) ≡
{
l ∈ C∞(P) :

D2l = 0, D̄2l = 0

l̄ ∗ l, l ∗ l̄, l are uniformly continuous onP

}
, (2.6)

whereD andD̄ are the holomorphic and anti-holomorphic part, respectively, of covariant
derivative of Kähler metric defined on each fiber ofP. Hence, the following equivalence of
C∗-algebras holds:

A ∼= Ku(P).

We call(Ku(P), ∗) theC∗-algebra of uniform Kähler functions onP.
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By the above results, we obtain a fundamental correspondence between algebra and
geometry as follows:

unital commutativeC∗-algebra ⇔ compact Hausdorff space⋂ ⋂
unital generally non-commutativeC∗-algebra ⇔ uniform Kähler bundle associated with aC∗-algebra

The upper correspondence above is just the Gel’fand representation of unital commutative
C∗-algebras.

Example 2.6. Assume thatH is a separable infinite dimensional Hilbert space.

(i) WhenA ≡ L(H) is the algebra of all bounded linear operators onH, the uniform
Kähler bundle ofA is (P(H) ∪ P−, p,2[0,1] ∪ {b0}), whereP(H) is the projective
Hilbert space ofH,P− is the union of a family of projective Hilbert spaces indexed by
the power set of the closed interval [0,1] and{b0} is the one-point set corresponding
to the equivalence class of identity representation(H, idL(H)) of L(H) onH. Since
the primitive spectrum ofL(H) is a two-point set, the topology of 2[0,1] ∪{b0} is equal
to {∅,2[0,1], {b0},2[0,1] ∪ {b0}} [7]. In this way, the base space of the uniform Kähler
bundle is not always a singleton when theC∗-algebra is typeI.

(ii) For theC∗-algebraA generated by the Weyl form of the one-dimensional canonical
commutation relationU(s)V(t) = e

√−1stV(t)U(s) for s, t ∈ R, its uniform Kähler
bundle is(P(H), p, {1pt}). The spectrum is a one-point set{1pt} since von Neumann
uniqueness theorem[1].

(iii) The CAR-algebraA is a UHF algebra with the nest{M2n(C)}n∈N. The uniform Kähler
bundle has the base space 2N and each fiber on 2N is a separable infinite dimensional
projective Hilbert space where 2N is the power set of the setN of all natural numbers
with trivial topology, that is, the topology of 2N is just{∅,2N}. In general, the Jacobson
topology of the spectrum of a simpleC∗-algebra is trivial[7].

3. The atomic bundle of a Hilbert C∗-module

The aim of this section is the construction of a natural vector bundle for a given Hilbert
C∗-module over aC∗-algebra.

3.1. The construction of the atomic bundle

Before starting to construct the atomic bundle of a HilbertC∗-module, we state the
definition of a HilbertC∗-module.

Definition 3.1 ([6]). X is a HilbertC∗-module over aC∗-algebraA if X is a rightA-module
and there is anA valued sesquilinear form

〈·|·〉 : X × X → A,
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which satisfies the following conditions:

〈η|ξa〉 = 〈η|ξ〉a (η, ξ ∈ X, a ∈ A), (〈η|ξ〉)∗ = 〈ξ|η〉 (η, ξ ∈ X),

〈ξ|ξ〉 ≥ 0 (ξ ∈ X), 〈ξ|ξ〉 = 0 ⇒ ξ = 0 (ξ ∈ X),

andX is complete with respect to theA-valued norm defined by

‖ξ‖ ≡ ‖〈ξ|ξ〉‖1/2 (ξ ∈ X). (3.1)

Let X be a HilbertC∗-module over a unitalC∗-algebraA and (P, p, B) the uniform
Kähler bundle associated withA. Defining a closed subspaceNρ of X with ρ ∈ P by

Nρ ≡ {ξ ∈ X : ρ(‖ξ‖2) = 0}, (3.2)

we consider the quotient vector space

EoX,ρ ≡ X/Nρ, (3.3)

equipped with the sesquilinear form〈·|·〉ρ onEoX,ρ defined by

〈·|·〉ρ : EoX,ρ × EoX,ρ → C, 〈[ξ]ρ|[η]ρ〉ρ ≡ ρ(〈ξ|η〉) ([ξ]ρ, [η]ρ ∈ EoX,ρ),

where

[ξ]ρ ≡ ξ + Nρ ∈ EoX,ρ (ξ ∈ X). (3.4)

Then〈·|·〉ρ becomes an inner product onEoX,ρ. Let EX,ρ be the completion ofEoX,ρ by the

norm‖ ·‖ρ ≡ (〈·|·〉ρ)1/2. We obtain a Hilbert space(EX,ρ, 〈·|·〉ρ) from a HilbertC∗-module
X for each pure stateρ ∈ P. We note thatEXρ andEXρ′ are equivalent Hilbert spaces when
ρ, ρ′ ∈ Pb.

Definition 3.2. The atomic bundleEX = (EX,ΠX,P) of a HilbertC∗-moduleX over a
C∗-algebraA is defined as the fiber bundleEX onP:

EX ≡
⋃
ρ∈P
EX,ρ,

where the projection mapΠX : EX → P is defined byΠX(x) = ρ for x ∈ EX,ρ.

The atomic bundle is the collection of itsB-fibers, where forb ∈ B, theB-fiberEbX of X
is the bundle(EbX,Π

b
X,Pb), defined by

EbX ≡
⋃
ρ∈Pb
EX,ρ, Πb

X : EbX → Pb, Πb
X ≡ ΠX|EbX .

3.2. Unitary group action on the atomic bundle

Let G be the group of all unitary elements inA. Define an actionχ of G onP by

χu(ρ) ≡ ρ ◦ Ad u∗ (u ∈ G,ρ ∈ P).
Thenχu mapsPb toPb for eachb ∈ B andu ∈ G.
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Lemma 3.3. G acts transitively onPb by Kähler automorphisms.

Proof. By irreducibility of the GNS representation of pure states, the statement follows
immediately. �

Next, define an actiontb of G onEoX = ⋃
ρ∈P E

o
X,ρ by

tbu([ξ]ρ) ≡ [ξu∗]χu(ρ) (u ∈ G, [ξ]ρ ∈ EoX,ρ),

tb is well defined since the mapξ �→ ξu∗ mapsNρ to Nχu(ρ). As tbu is a unitary map from
EoX,ρ to EoX,χu(ρ)

, we can extendtbu as a unitary map fromEX,ρ to EX,χu(ρ). We note that

tbcu(x) = c̄tbu(x) (u ∈ G, c ∈ U(1)). (3.5)

We define an actiont of G on EX by t|EbX ≡ tb, b ∈ B. ThenT ≡ (t, χ) is an action ofG

on (EX,ΠX,P) by bundle automorphisms. This action preservesB-fibers(EbX,Π
b
X,Pb),

b ∈ B, too.
Consider now the Hopf bundle(S(Hb), µb,Pb) (seeAppendix A). For the fibrations

(EbX,Π
b
X,Pb) and(S(Hb), µb,Pb), define their fiber productEb,U(1)

X ⊂ EbX × S(Hb) by

Eb,U(1)
X ≡ EbX ×Pb S(Hb) = {(x, h) ∈ EbX × S(Hb) : Πb

X(x) = µb(h)}.

Thus an actionσb of G onEb,U(1)
X is defined by

σb
u(x, h) ≡ (tu(x), πb(u)h) ((x, h) ∈ Eb,U(1)

X , u ∈ G).

We note that a representation(Hb, πb) of A induces an action ofG onS(Hb).

Lemma 3.4. For (x, h) ∈ Eb,U(1)
X andu ∈ G, if σb

u(x, h) = (y, h), thenx = y.

Proof. We have just to consider the casex ∈ EoX,ρ. Let x = [ξ]ρ. By assumption,(y, h) =
([ξu∗]χu(ρ), πb(u)h). Henceh = πb(u)h or, equivalently

πb(u
∗)h = h. (3.6)

By definition of fiber product, we haveχu(ρ) = ρ andy = [ξu∗]ρ. By using the above
results, we obtain:

‖x − y‖2
ρ = ρ(‖ξ − ξu∗‖2) = ρ(‖ξ‖2) + ρ(u‖ξ‖2u∗) − ρ(〈ξ|ξ〉u∗) − ρ(u〈ξ|ξ〉),

with ρ = 〈h|πb(·)h〉. Therefore(3.6) implies

‖x − y‖2
ρ = 2ρ(‖ξ‖2) − ρ(〈ξ|ξ〉) − ρ(〈ξ|ξ〉) = 0.

Hence we obtainx = y. �

Definition 3.5. Fb
X is the set of all orbits ofG in Eb,U(1)

X .
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LetO(x, h) ∈ Fb
X be the orbit containing(x, h) ∈ Eb,U(1)

X .

O(x, h) = {σb
u(x, h) : u ∈ G} = {(tu(x), πb(u)h) : u ∈ G}.

By Lemma 3.4, any element ofO(x, h) is written as(yh′ , h′), whereyh′ is an element of
EbX determined byh′ ∈ S(Hb) uniquely. HenceFb

X is a family of spheres inEb,U(1)
X , each

homeomorphic toS(Hb).

Lemma 3.6. For (y, h′) in O(x, h), if y = x �= 0, thenh = h′.

Proof. By the choice of(x, h′), there isu ∈ G such thatσb
u(x, h) = (x, h′). tbu(x) = x and

πb(u)h = h′. Sinceµb(h
′) = Πb

X(x) = µb(h), there isc ∈ U(1) such thath′ = ch. Hence
we can chooseu = cI. Then we have

x = tbu(x) = tbcI(x) = c̄tbI (x) = c̄x,

by (3.5). Thereforec = 1 and we obtainh = h′ whenx �= 0. �

Corollary 3.7. For c ∈ U(1),O(x, ch) = O(cx, h).

FurthermoreO(0, h) = {(0, h′) : h′ ∈ S(Hb)}. Let (y, h′) ∈ O(x, h) ∩ (EX,µb(h) ×
S(Hb)). Then there isu ∈ G such that(y, h′) = σu(x, h). By the choice of(y, h′), h′ ∈
µ−1
b (µb(h)). Hence there isc ∈ U(1) such thath′ = ch.

Proposition 3.8. Fb
X is naturally identified with the Hilbert spaceEX,ρ, for eachρ ∈ Pb.

3.3. Structure of the atomic bundle

We shall prove that the atomic bundle has a Hilbert bundle structure. Let(S(Hb) ×U(1)
Fb
X, πFb

X
,P(Hb)) be the associated bundle of(S(Hb), µb,P(Hb)) byFb

X where the Hilbert

space structure onFb
X is defined according toProposition 3.8.

Lemma 3.9. Any element ofS(Hb) ×U(1) Fb
X can be written as[(h,O(x, h))] where

O(x, h) ∈ Fb
X.

Proof. By definition of the associated bundle (Appendix A.3), an element ofS(Hb)×U(1)F
b
X

is theU(1)-orbit [(h,O(x, k))]. Take an element [(h,O(y, k))] ∈ S(Hb) ×U(1) F
b
X. By

definition ofO(y, k) and the transitivity of the action ofG on S(H), there isu ∈ G such
thath = uk and(tbu(y), h) ∈ O(y, k). Denotex ≡ tu(y). ThenO(x, h) = O(y, k). Hence
[(h,O(y, k))] = [(h,O(x, h))]. �

From now on, we shall denote

[h, x] ≡ [(h,O(x, h))] ∈ S(Hb) ×U(1) F
b
X

for h ∈ S(H) andx ∈ EbX.
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Recall for eachb ∈ B,Pb is a Kähler manifold which is isomorphic to a projective Hilbert
spaceP(Hb) by the mapτb.

Theorem 3.10. For eachb ∈ B, theB-fiber (EbX,Π
b
X,Pb) at b is a locally trivial Hilbert

bundle isomorphic to(S(Hb) ×U(1) F
b
X, πFb

X
,P(Hb)).

Proof. Define a mapΨb : EbX → S(Hb) ×U(1) F
b
X by Ψb(x) ≡ [hx, x] (x ∈ EbX), where

hx ∈ µ−1
b (Πb

X(x)). If Ψb(x) = Ψb(y) for x, y ∈ EbX, then [h, x] = [h′, y]. Therefore
there isc ∈ U(1) such that(h,O(x, h))c = (h′,O(y, h′)). By h′ = c̄h andCorollary 3.7,
O(y, c̄h) = O(x, c̄h). By Lemma 3.4, we getx = y, so thatΨb is injective. By defini-
tion of Fb

X, Ψb is surjective, henceΨb is a bijection. We obtain a set-theoretical isomor-
phism(Ψb, τb) of fibrations between(EbX, Πb

X, Pb) and(S(Hb) ×U(1) F
b
X, πFb

X
,Pb) such

that any restrictionΨb|EX,ρ of Ψb at a fiberEX,ρ is a unitary betweenEX,ρ andπ−1
Fb
X

(ρ)

for ρ ∈ Pb.
This isomorphism induces on(EbX,Π

b
X,Pb) the Hilbert bundle structure of the associated

bundle(S(Hb) ×U(1) F
b
X, πFb

X
,Pb). �

By Theorem 3.10andDefinition 3.2, we have constructed in a canonic way a locally
trivial Hilbert bundle from a HilbertC∗-module and we understand that the atomic bundle
of a Hilbert C∗-module is a family of associated bundles of Hopf bundles indexed by
spectrumB:

EX ∼=
⋃
b∈B

(S(Hb) ×U(1) F
b
X).

We conclude this section by introducing a bundle map to be used inSection 5. Let (X ×
P, t,P) be the trivial complex vector bundle onP. Then we introduce the map

PX : X × P→ EX; PX(ξ, ρ) ≡ [ξ]ρ ((ξ, ρ) ∈ X × P). (3.7)

The imagePX(X × Pb) is dense inEbX, for everyb ∈ B. MoreoverPX(ξ
′, ρ) = PX(ξ, ρ)

if and only if ξ′ − ξ ∈ Nρ, for ρ ∈ P. Then(PX, id) is a bundle map from(X × P, t,P) to
(EX,ΠX,P).

4. Connection and ∗-action

In this section, we define a flat connectionD on the atomic bundle and prove a relation
between the associativity of∗-action defined byD and the flatness ofD.

4.1. The atomic connection of the atomic bundle

To define the∗-action of(C∞(P), ∗) on the smooth sections of the atomic bundle of a
Hilbert C∗-moduleX, we define a connectionD of EX, called the atomic connection.
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LetEX = (EX,ΠX,P) be the atomic bundle of a HilbertC∗-moduleX over aC∗-algebra
A. Let Γ(EX) be the set of all bounded sections ofEX, that is,Γ(EX) ! s : P → EX is a
right inverse ofΠX and satisfies

‖s‖ ≡ sup
ρ∈P

‖s(ρ)‖ρ < ∞. (4.1)

By standard operations,Γ(EX) is a complex linear space, isometric to the Banach direct
sum⊕ρ∈PEX,ρ. By Theorem 3.10, we can consider the differentiability ofs ∈ Γ(EX) at
eachB-fiber s|Pb : Pb → EbX for eachb ∈ B in the sense of Fréchet differentiability of
Hilbert manifolds. DefineΓ∞(EX) the set of allB-fiberwise smooth sections inΓ(EX).

A hermitian metricH is defined onEX by

Hρ(s, s
′) ≡ 〈s(ρ)|s′(ρ)〉ρ (4.2)

for ρ ∈ P, s, s′ ∈ Γ∞(EX) [9]. LetX(P) be the set of allB-fiberwise smooth vector fields
of P.

Definition 4.1. A connection onEX is a C-bilinear mapD which isC∞(P)-linear with
respect toX(P) and satisfies the Leibniz law with respect toΓ∞(EX):

DY(s · l) = ∂Y l · s + l · DYs

for s ∈ Γ∞(EX), l ∈ C∞(P) andY ∈ X(P).

For h ∈ S(Hb) we consider a trivializing neighborhoodVh for the Hopf bundle (see
Appendix A.1). For a fixedρ ∈ Vh andY ∈ X(Pb), we denote byYh

ρ the corresponding
tangent vector atρ in local coordinates and by the linear operator of multiplication by
number

−1

2

〈βh(ρ)|Yh
ρ 〉

1 + ‖βh(ρ)‖2
.

Proposition 4.2. Dh
Y,ρ ≡ ∂Yh

ρ
+ Ah

Y,ρ gives the local expression of a flat connectionDb on

EbX.

Proof. We prove the cocycle condition for the family of linear mapsA ≡ {Ah}h∈S(Hb),
whereAh : Hb → L(Fb

X) is defined byAh(Yh
ρ ) = Ah

Y,ρ. For ρ ∈ Pb, chooseh, h′ ∈
S(Hb) such thatρ ∈ Vh ∩ Vh′ . The cocycle condition forA is given by formula(A.2) in
Appendix A.5.

Let z′ ≡ βh′(ρ), z ≡ βh(ρ). By a simple computation, we get

−2 · Ah
X,ρ = 〈z|Xh

ρ〉
1 + ‖z‖2

= −2 · Ah′
X,ρ − 〈h|Xh′

ρ 〉
〈h|z′ + h′〉 ,

and formula(A.2) holds. ThereforeDh
Y,ρ gives the local expression of a connectionDb. The

curvatureRb of Db can be expressed as:

Rb
X,Y = (dA)(X, Y) + (A ∧ A)(X, Y) (X, Y ∈ X(Pb)).
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SinceA is scalar,A ∧ A = 0. In a chart(Vh, βh,Hh) of ρ ∈ Pb andz = βh(ρ) ∈ Hh, we
have

(dzA)(X, Y) = XAh
Y,z − YAhX,z − Ah

[X,Y ],z.

By simple computation we obtain(dzA)(X, Y) = 0, so thatRb = 0 andDb is flat. �

Definition 4.3. We call the connection inProposition 4.2the atomic connection of the
atomic bundle.

4.2. The∗-action of a function algebra on sections of the atomic bundle

By (2.3), the function spaceC∞(P) is a∗-algebra with∗-product which is generally not
associative. We define the∗-action of(C∞(P), ∗) on the smooth sections of the atomic
bundle of a HilbertC∗-module by using the atomic connectionD of EX. We characterize
algebraic properties, commutativity, associativity, of∗-action byD and the curvature ofEX
with respect toD. Now we denote byD any connection onEX.

Definition 4.4. We define the (right)∗-action ofC∞(P) onΓ∞(EX) by

s ∗ l ≡ s · l + √−1DXl
s

for l ∈ C∞(P) ands ∈ Γ∞(EX), whereXl is the holomorphic Hamiltonian vector field of
l with respect to the Kähler form ofP.

We give a geometric characterization of the above∗-action.

Lemma 4.5. For eachs ∈ Γ∞(EX) andl, m ∈ C∞(P), the following equations hold:

(s ∗ l) ∗ m − (s ∗ m) ∗ l = (
√−1{l, m} + [DXl

,DXm ])s,

s ∗ (l ∗ m) − s ∗ (m ∗ l) = (
√−1{l, m} + D[Xl,Xm])s.

Proof. The first equation follows immediately by

(s ∗ l) ∗ m − (s ∗ m) ∗ l

= √−1DXm(s · l) + √−1((DXl
s) · m + √−1DXmDXl

s) − √−1DXl
(s · m)

−√−1((DXms) · l + √−1DXl
DXms),

since

Xml − Xlm = {l, m}.
The proof of the second equation is analogous. �

Remark 4.6.

(i) By Lemma 4.5, the non-commutativity of∗-action ofC∞(P) onΓ∞(EX) depends on
the connectionD of EX and the Kähler form ofP.
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(ii) We denote three different notions,∗-action,∗-product and involution by the same
symbol “∗” according to custom style.

Let the associatora(l,m) of l, m ∈ C∞(P) be an operator

a(l,m) : Γ∞(EX) → Γ∞(EX),

a(l,m)s ≡ (s ∗ l) ∗ m − s ∗ (l ∗ m) (s ∈ Γ∞(EX)).

Then we have a relation between associativity and curvature.

Proposition 4.7. OnΓ∞(EX) and forl, m ∈ C∞(P), the following equation holds:

a(l,m) − a(m, l) = RXl,Xm,

where R is the curvature ofEX with respect to D defined by

RY,Z ≡ [DY,DZ] − D[Y,Z] (Y, Z ∈ X(P)).

5. A sectional representation of Hilbert C∗-modules

Let us summarize our notations. LetX be a HilbertC∗-module over a unitalC∗-algebra
A,Ku(P) the image of the Gel’fand representation ofA andEX = (EX,ΠX,P) the atomic
bundle ofX. For the mapPX defined in(3.7), define a linear map

(PX)∗ : Γ(X × P) → Γ(EX), ((PX)∗(s))(ρ) ≡ PX(s(ρ), ρ)

(s ∈ Γ(X × P), ρ ∈ P).
We define a subspaceΓX of Γ(EX) as follows.

Definition 5.1.

ΓX ≡ (PX)∗(Γconst(X × P)),
whereΓconst(X × P) is the subspace ofΓ(X × P) consisting of all constant sections.

Remark 5.2. ΓX is quite smaller that the set of all holomorphic sections ofEX. Actually,
we shall see inTheorem 5.6that the hermitian form, restricted toΓX has values inKu(P).

We prepare some lemmata for the proof of the reconstruction theorem and explain how
the structure of HilbertC∗-module is interpreted as the geometrical structure of the atomic
bundle.

For ξ ∈ X, we define a sectionsξ ∈ Γ(EX) of EX by

sξ(ρ) ≡ [ξ]ρ (ρ ∈ P).
Define the map

Ψ : X → Γ(EX), Ψ(ξ) ≡ sξ (ξ ∈ X).
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Lemma 5.3. The mapΨ is well defined and has the following properties:

(i) Ψ is a linear isometry,
(ii) for eachξ ∈ X, Ψ(ξ) ∈ Γ∞(EX) and is holomorphic,

(iii) Ψ(ξ) ∗ fA = Ψ(ξ · A) for ξ ∈ X andA ∈ A.

Proof. For everyx ∈ X, we have

‖sξ‖ = sup
ρ∈P

|ρ(〈ξ|ξ〉)|1/2 = ‖〈ξ|ξ〉‖1/2 = ‖ξ‖.

Hencesξ is bounded onP and the mapΨ well defined and isometric. This proves (i).
(ii) Let ρ ∈ P, so thatρ ∈ Pb for someb ∈ B. Choose as a representative forb an

irreducible representation(H, π). Fix h ∈ S(H) and, using the notations in(A.1), take a
local trivializationψα,h of the Hopf bundle at(Vh, βh,Hh) with ρ ∈ Vh. By formula(B.2)
we obtain

∂Yφh(ρ)(sξ(ρ)) = O
([

∂Y ξ̂ρ + ξρ

(
Kh

Y,ρ − 〈z|Y〉
2(1 + ‖z‖2)

)]
ρ

, h

)
. (5.1)

Owing to(B.3), the right-hand side of(5.1)is smooth with respect toz ≡ βh(ρ) ∈ Hh, and
hence,sξ is smooth atPb for eachb ∈ B. Forρ0 ∈ Pb, we can chooseh0 ∈ S(Hb) such
that

ρ0 = 〈h0|πb(·)h0〉.
Thenβh0(ρ0) = 0. According to the proof ofLemma B.1, we have

〈e|φh0(ρ)(sξ(ρ))〉 =
〈Ωh0

ρ′ |πb(〈ξ′|ξ〉)(z + h0)〉√
1 + ‖z‖2

for z = βh0(ρ), ρ ∈ Vh0. For an anti-holomorphic tangent vectorȲ of Pb, we have

∂̄Ȳ φh(ρ)(sξ(ρ)) = O
([

−ξρ
〈Y |z〉

2(1 + ‖z‖2)

]
ρ

, h

)
,

from which follows:

∂̄Ȳ φh(ρ)(sξ(ρ))|z=0 = 0.

We see that the anti-holomorphic derivative ofsξ vanishes at each point inPb. Hencesξ is
holomorphic.

(iii) Let A ∈ A. For b ∈ B andρ0 ∈ Pb, take a chart(Vh, βh,Hh) at ρ0, whereh is a
unit vector inH and(H, π) is a representative ofb. Then forz ∈ Hh, we have

(fA ◦ β−1
h )(z) = 〈(z + h)|π(A)(z + h)〉

1 + ‖z‖2
.

Then the representationXh
fA

of the Hamiltonian vector fieldXfA at (Vh, βh,Hh) is

(Xh
fA

)z = −√−1(π(A)(z + h) − 〈h|π(A)(z + h)〉(z + h))
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for z ∈ Hh. If we takeh such thatβh(ρ0) = 0, then it holds that

(Xh
fA

)0 = −√−1(π(A)h − 〈h|π(A)h〉h).
The connectionD satisfies

〈v|(DXfA
s)(ρ0)〉ρ0 = ∂ρ0(〈v|s(·)〉ρ0)(XfA)

for v ∈ Eh, s ∈ Γ∞(EX). Hence we have

(DXfA
sξ)(ρ0) = [ξaXfA

,0]ρ0,

whereaXfA
,0 ∈ A satisfies

π(aXfA
,0)h = XfA = −√−1(π(A) − 〈h|π(A)h〉)h.

Therefore we have
√−1(DXfA

sξ)(ρ0)= √−1[ξ · (−√−1(A − 〈h|π(A)h〉))]ρ0

= [ξA]ρ0 − [ξ]ρ0〈h|π(A)h〉 = sξA(ρ0) − sξ(ρ0)fA(ρ0),

from which follows:

(sξ ∗ fA)(ρ0) = sξ(ρ0)fA(ρ0) + √−1(DXfA
sξ)(ρ0) = sξA(ρ0).

Therefore we obtainΨ(ξ) ∗ fA = Ψ(ξA). �

Proposition 5.4. Any element inΓX is holomorphic.

Proof. For eachτ ∈ Γconst(X×P), there isξ ∈ X such thatτ(ρ) = (ξ, ρ) for ρ ∈ P. Then

s ∈ ΓX ⇔ s(ρ) = [ξ]ρ for eachρ ∈ P⇔ s = Ψ(ξ) ⇔ s ∈ Ψ(X).

HenceΓX = Ψ(X). ThereforeProposition 5.4follows fromLemma 5.3(ii). �

Lemma 5.5.

(i) ΓX is a rightKu(P)-module by the∗-action defined inDefinition 4.4.
(ii) For the hermitian metric H ofEX, let h be the restriction of H toΓX. Then the

function-valued sesquilinear form

h : ΓX × ΓX → C∞(P),

satisfies

h(s, s′) ∈ Ku(P) (s, s′ ∈ ΓX), h(s, s′) = h(s′, s) (s, s′ ∈ ΓX),

h(s, s) ≥ 0 (s ∈ ΓX), h(s, s′ ∗ f) = h(s, s′) ∗ f (s, s′ ∈ ΓX, f ∈ Ku(P)),

‖h(s, s)‖1/2 = ‖s‖ (s ∈ ΓX), (5.2)

where the positivity in(5.2)means thath(s, s) is a positive-valued function onP and
the norm ofh(s, s) is the one defined in(4.1).
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(iii) The following equation holds:

hρ(Ψ(ξ), Ψ(η)) = ρ(〈ξ|η〉) (ξ, η ∈ X, ρ ∈ P).

Proof. By Proposition 5.4we know thatΓX = Ψ(X). By Ku(P) = f(A) andLemma 5.3
(iii), the map is a module action. Thus (i) is verified.

(ii) and (iii): Next, we have the following equations

hρ(Ψ(ξ), Ψ(ξ
′)) = Hρ(sξ, sξ′) = 〈sξ(ρ)|sξ′(ρ)〉ρ = ρ(〈ξ|ξ′〉),

which proves (iii). Furthermore,ρ(〈ξ|ξ′〉) = f〈ξ|ξ′〉(ρ). Thereforeh(Ψ(ξ), Ψ(ξ′)) = f〈ξ|ξ′〉 ∈
Ku(P). Henceh(s, s′) ∈ Ku(P) for eachs, s′ ∈ ΓX. Forξ, η ∈ X, A ∈ A,

hρ(sη, sξ ∗ fA) = hρ(sη, sξA) = ρ(〈η|ξA〉) = (f〈η|ξ〉 ∗ fA)(ρ) = (h(sη, sξ) ∗ fA)(ρ)

(by using(iii )).

Henceh(s, s′ ∗ l) = h(s, s′) ∗ l for s, s′ ∈ ΓX, l ∈ Ku(P). The other equations in statement
(ii) follow from the property of theC∗-valued inner product ofX and by the proof of
Lemma 5.3(i). �

Finally we come to the reconstruction theorem for HilbertC∗-modules by means of their
atomic bundle.

Theorem 5.6.

(i) Any element inΓX is holomorphic.
(ii) ΓX is a HilbertC∗-module over theC∗-algebraKu(P).

(iii) There is a Banach space isomorphismΨ : X → ΓX

where the horizontal arrows are module actions. Hence, under the identificationf :
A ∼= Ku(P), ΓX is isomorphic toX as a HilbertA-module.

Proof. (i) is Proposition 5.4. (ii) By Lemma 5.5(i), (ii) and Definition 3.1

h : ΓX × ΓX → Ku(P), (5.3)

is a positive definiteC∗-inner product of a rightKu(P)-moduleΓX. HenceΓX is a Hilbert
C∗-module over aC∗-algebraKu(P).

(iii) By Lemma 5.3(i) andProposition 5.4, Ψ is an isomorphism betweenX andΓX. If
we rewrite the module actionsφ andψ of X andΓX, respectively, by

φ(ξ,A) = ξA, ψ(s, l) = s ∗ l
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for ξ ∈ X, A ∈ A, s ∈ ΓX andl ∈ Ku(P), then we have

(ψ ◦ (Ψ × f))(ξ, A) = Ψ(ξ) ∗ fA = sξA = (Ψ ◦ φ)(ξ, A),

by Lemma 5.3(iii). Hence we obtain:

ψ ◦ (Ψ × f) = Ψ ◦ φ.

Therefore the diagram in the statement (iii) is commutative. �
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Appendix A. The Hopf bundle over a Hilbert space

We recall some facts about the Hopf bundle over a Hilbert spaceH and its associated
bundle. Note we donotassume dimH < ∞.

A.1. Definition

We denoteH a Hilbert space overC with dimH ≥ 1. Define

S(H) ≡ {z ∈ H : ‖z‖ = 1}, P(H) ≡ (H \ {0})/C×.

We call S(H) andP(H) a Hilbert sphereand a projective Hilbert spaceover H, re-
spectively. We denote an element ofP(H) by [z] for z ∈ H \ {0}. It is well known
that S(H) is a submanifold ofH, in the relative topology. We giveP(H) the quotient
topology fromH \ {0} ⊂ H by the natural projection. Define a projectionµ from S(H)

toP(H) by

µ : S(H) → P(H), µ(z) ≡ [z] (z ∈ S(H)).

We call(S(H), µ,P(H)) the Hopf(fiber) bundle overH. Clearly,µ−1([z]) ∼= S1 for each
[z] ∈ P(H).

We define local trivial neighborhoods of the Hopf bundle[3]. Fix h ∈ S(H) and define

Vh ≡ {[z] ∈ P(H) : 〈h|z〉 �= 0}, Hh ≡ {z ∈ H : 〈h|z〉 = 0},
βh : Vh → Hh, βh([z]) ≡ z

〈h|z〉 − h ([z] ∈ Vh).

Then {(Vh, βh,Hh)}h∈S(H) is a holomorphic atlas forP(H). As well known,P(H) is a
Kähler manifold[3].
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Let ψh be the local trivializing neighborhoods forS(H) atVh defined by

ψh : µ−1(Vh) ∼= Vh × U(1), ψh(z) ≡ ([z], φh(z)),

φh(z) ≡ 〈z|h〉
|〈h|z〉| (z ∈ µ−1(Vh)),

ψ−1
h ([z], g) ≡ z

〈h|z〉
|〈h|z〉|g ([z] ∈ Vh, g ∈ U(1)).

Hence{Vh}h∈S(H) is a system of local trivial neighborhoods for(S(H), µ,P(H)). LetR be
the right action ofU(1) onS(H) defined by

S(H) × U(1) → S(H); (z, c) �→ z · c = Rcz ≡ c̄z.

Then the following conditions are satisfied: (i)µ(Rcz) = µ(z), (ii) R is free, that is, if
Rcz = z, thenc = 1, (iii) for eachh ∈ S(H):

φh(Rcz) = 〈z|h〉
|〈h|z〉|c (z ∈ S(H), c ∈ U(1)).

Hence(S(H), µ,P(H)) is a principalU(1)-bundle.

Lemma A.1. Leth, h′ ∈ S(H) with Vh′ ∩ Vh �= ∅. For z,X ∈ Hh, we have

(βh′ ◦ β−1
h )(z) = h + z

〈h′|h + z〉 − h′,

∂z(βh′ ◦ β−1
h )(X) = 1

〈h′|h + z〉X − 〈h′|X〉
〈h′|h + z〉2

(h + z).

Definition A.2. We denote byΩh the local section

Ωh([z]) ≡ φh(z)z ([z] ∈ Vh).

By definition,〈h|Ωh(ρ)〉 > 0 for ρ ∈ Vh.

A.2. Transition functions

Let h, h′ ∈ S(H) with h′ ∈ Vh, then the transition functionQh′h : Vh ∩ Vh′ → U(1) is

Qh′h([z]) ≡ 〈z|h′〉
|〈h′|z〉|

〈h|z〉
|〈h|z〉| .

Fact A.3.

(i) Qhh([z]) = 1 for [z] ∈ Vh.
(ii) If h, h′ ∈ S(H) satisfy〈h′|h〉 �= 0, thenQh′h = Q−1

hh′ .
(iii) If h, h′, h′′ ∈ S(H) are mutually non-orthogonal, then

Qh′′h′([z]) · Qh′h([z]) = Qh′′h([z]) ([z] ∈ Vh ∩ Vh′ ∩ Vh′′).
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Lemma A.4. Let X be a tangent vector ofP(H) at ρ ∈ Vh ∩ Vh′ which is realized inHh′
andβh′(ρ) = z. Then

∂z(Q
−1
h′h ◦ β−1

h′ )(X) = −1

2

〈z + h′|h〉2〈h|X〉
|〈h|z + h′〉|3 .

Proof. The statement is proved by a simple computation. �

Lemma A.5. In the notation ofLemma A.4we have:

(Qh′h ◦ β−1
h′ )(w) · ∂w(Q−1

h′h ◦ β−1
h′ )(X) = −1

2

〈h|X〉
〈h|w + h′〉 .

Proof. By Lemma A.4and the definition ofQ, the statement follows easily. �

A.3. Associated bundles of Hopf bundles

LetF be aC∞-manifold with a leftU(1)-actionα andS(H)×F the direct product space
of S(H) andF . Define a rightU(1)-actionγ onS(H) by

zγc ≡ c̄z (c ∈ U(1), z ∈ S(H)).

We defineS(H) ×U(1) F as the set of allU(1)-orbits inS(H) × F , where theU(1)-action
is defined by

(z, f)c ≡ (zγc, α(c̄)f) (c ∈ U(1), (z, f) ∈ S(H) × F).

The topology ofS(H) ×U(1) F is induced fromS(H) × F by the natural projectionπ :
S(H)× F → S(H)×U(1) F . We denote the element ofS(H)×U(1) F containing(x, f) by
[(x, f)]. Define a projection

πF : S(H) ×U(1) F → P(H), πF ([(x, f)]) ≡ µ(x).

The fibrationF ≡ (S(H) ×U(1) F, πF ,P(H)) is calledthe associated bundle of(S(H), µ,

P(H)) by F. Forh ∈ S(H), define a mapψα,h : π−1
F (Vh) → Vh × F by

ψα,h([(z, f)]) ≡ (µ(z), φα,h([(z, f)])) = (µ(z), α(φh(z))f). (A.1)

We have

ψ−1
α,h([z], f) =

[(
z, α

( 〈h|z〉
|〈h|z〉|

)
f

)]
(([z], f) ∈ Vh × F).

The definition ofψα,h is independent of the choice of(z, f). Henceψα,h is a local trivial-
ization ofF atVh. The transition function onVh ∩ Vh′ × F is therefore

Q̂α,h′,h ≡ ψα,h′ ◦ ψ−1
α,h : ([z], f) �→ ([z], α(Qh′h([z]))f).

If F is a complex vector space, then the naturalU(1)-actionα is the scalar multiplication.
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A.4. Recovery of the typical fiber

Let (S(H), µ,P(H)) be a Hopf bundle andF a complex Hilbert space. We consider the
associated bundleS(H) ×U(1) F which is done w.r.t. the natural action ofU(1) onF .

Proposition A.6. There is the following equivalence of fiber bundles onP(H):

(S(H) ×U(1) F) ×P(H) S(H) ∼= S(H) × F.

Proof. LetX1 be the l.h.s. in the above statement. We note that any element ofX1 is written
as([(h, v)], h), where [(h, v)] ∈ S(H) ×U(1) F becauseπF([(h, v)]) = µ(h) and we can
choose the phase factor of(h, v) according toh. Let

π̂F : X1 → P(H), π̂F ([(h, v)], h) ≡ h.

Define

Φ : X1 → S(H) × F, Φ([(h, v)], h) ≡ (h, v).

ThenΦ is well defined and bijective. Furthermore

(µF ◦ Φ)([(h, v)], h) = µF(h, v) = h = π̂F ([(h, v)], h).

ThereforeµF ◦ Φ = π̂F and (Φ, id) is a bundle map betweenX1 and (S(H) × F,µF ,

P(H)). �

Proposition A.7. Letα be a transitive action of a group G onS(H) and consider the action

α̂ ≡ (α ×U(1) 1) ×P(H) α,

of G onX1 ≡ (S(H) ×U(1) F) ×P(H) S(H). Then the quotientY1 of X1 w.r.t. the actionα̂
is canonically identified with the linear space F.

Proof. For [x] = [([(h, v)], h)] ∈ Y1, [x] = {([(αgh, v)], αgh) : g ∈ G}. Hence we can
take the quotientΦ to the bijection

Φ̃ : Y1 → S(H) × F, Φ̃([x]) ≡ [Φ(x)]. �

A.5. Connections on an associated bundle of a Hopf bundle

Let F ≡ (S(H) ×U(1) F, πF ,P(H)) be an associated vector bundle of a Hopf bundle
(S(H), µ,P(H)) by a complex Hilbert spaceF . LetΓ(F) be the set of all smooth sections
of F, that is the set of right inverses of the projectionπF . By the standard operations,Γ(F)
is a complex linear space.

Definition A.8. D is connection onF if D is a bilinear map of complex vector spaces
D : X(P(H)) × Γ(F) → Γ(F) which isC∞(P(H))-linear with respect toX(P(H)) and
satisfies the Leibniz law with respect toΓ(F):

DY(s · l) = ∂Y l · s + l · DYs (s ∈ Γ(F), l ∈ C∞(P(H))Y ∈ X(P(H))).
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For Y ∈ X(P(H)), h ∈ S(H) andρ ∈ Vh, we denote byYh
ρ the corresponding tangent

vector atρ in a local chart. Assume that a connectionD onF can be written as∂+A. Then
DY = ∂Y + AY is a linear map onΓ(F). If DY |hρ is the local expression ofDY on the local
trivial chart w.r.t.h ∈ S(H) andρ ∈ Vh, then we obtain families of linear maps

Ah
Y,ρ : F → F,

such that∂Y |hρ + Ah
Y,ρ = (∂Y + AY)

h
ρ = (∂ + A)hY,ρ.

Fact A.9. The family{Ah
Y,ρ} is the local expression of a connectionD ≡ ∂+A onF if and

only if the following equality is satisfied:

Ah′
Y,ρ = −1

2

〈h|Y〉
〈h|z + h′〉 + Ah

Y,ρ (ρ ∈ Vh′ ∩ Vh), (A.2)

whereY is a holomorphic tangent vector ofP(H) at ρ which is realized onHh′ andz =
βh′(ρ).

Proof. By Leibniz rule andLemma A.5, we obtain the formula directly. �

Appendix B. Lemma for the main theorem

We prepare some equations for the main theorem. Forρ ∈ Vh, define a vector inΩh
ρ in

Hb by

Ωh
ρ ≡ βh(ρ) + h√

1 + ‖βh(ρ)‖2
.

Assume thatρ = ωx ◦ πb for x ∈ Hb, ‖x‖ = 1. Then [x] = [Ωh
ρ] and 〈h|Ωh

ρ〉 > 0.
Let s be a section inΓ(EX) such that for eachρ ∈ Pb, there isξρ ∈ X which satisfies
s(ρ) = [ξρ]ρ ∈ EX,ρ. Let z = βh(ρ) for h ∈ S(Hb) such thatρ ∈ Vh.

Lemma B.1. Letψα,h be as in(A.1). Then the following equations hold:

〈e|ψα,h(s(ρ))〉 =
〈Ωh

ρ′ |πb(〈ξ′|ξρ〉)(z + h)〉√
1 + ‖z‖2

(e = O([ξ′]ρ′ , h) ∈ Fb
X), (B.1)

∂Yφh(ρ)(s(ρ)) = O
([

∂Y ξ̂ρ + ξρ

(
Kh

Y,ρ − 〈z|Y〉
2(1 + ‖z‖2)

)]
ρ

, h

)
, (B.2)

whereKh
Y,ρ ∈ A is defined by

πb(K
h
Y,ρ)(h + z) = Y, (B.3)

and[∂Y ξ̂ρ]ρ ∈ EX,ρ is defined by

〈[η]ρ|[∂Y ξ̂ρ]ρ〉ρ ≡ ρ(∂Y 〈η|ξρ〉)
for [η]ρ ∈ EX,ρ.
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Proof. Let φα,h : (Πb
X)

−1(Vh) → Fb
X be the map defined by

ψα,h(x) = (µb(h), φα,h(x)).

For e = O([ξ′]ρ′ , h) ∈ Fb
X such thath ∈ µ−1

b (ρ), we have

〈e|φα,h(s(ρ))〉 = 〈O([ξ′]ρ′ , h′)|O([ξ]ρ, h)〉 =
〈Ωh

ρ′ |πb(〈ξ′|ξρ〉)(z + h)〉√
1 + ‖z‖2

.

From this we get

〈e|∂Yφh(ρ)(s(ρ))〉 =
〈Ωh

ρ′ |πb(∂Y 〈ξ′|ξρ〉)(z + h)〉√
1 + ‖z‖2

+
〈Ωh

ρ′ |πb(〈ξ′|ξρ〉)Y〉√
1 + ‖z‖2

−
〈Ωh

ρ′ |πb(〈ξ′|ξρ〉)(z + h)〉〈z|Y〉
2(
√

1 + ‖z‖2)3
.

Hence we obtain

∂Yφh(ρ)(s(ρ)) = O
([

∂Y ξ̂ρ + ξρ

(
Kh

Y − 〈z|Y〉
2(1 + ‖z‖2)

)]
ρ

, h

)
. � (B.4)
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