

Available online at www.sciencedirect.com



JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 48 (2003) 275-296

www.elsevier.com/locate/jgp

# Serre–Swan theorem for non-commutative $C^*$ -algebras

## Katsunori Kawamura

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Received 22 July 2002; received in revised form 10 February 2003

#### Abstract

For a Hilbert  $C^*$ -module X over a  $C^*$ -algebra  $\mathcal{A}$ , we introduce a vector bundle  $\mathcal{E}_X$  associated to X. We prove that  $\mathcal{E}_X$  has an hermitian metric and a flat connection. We introduce a vector space  $\Gamma_X$  of holomorphic sections of  $\mathcal{E}_X$  with the following properties: (i)  $\Gamma_X$  is a Hilbert  $\mathcal{A}$ -module, (ii) the action of  $\mathcal{A}$  on  $\Gamma_X$  is defined by means of the connection of  $\mathcal{A}$ , (iii) the  $C^*$ -inner product of  $\Gamma_X$  is induced by the hermitian metric of  $\mathcal{E}_X$ .

We prove that the Hilbert  $C^*$ -module  $\Gamma_X$  is isomorphic to X.

This sectional representation is a generalization of the Serre–Swan theorem to non-commutative  $C^*$ -algebras. We show that  $\mathcal{E}_X$  is isomorphic to an associated bundle of an infinite dimensional Hopf bundle with the structure group U(1).

© 2003 Elsevier Science B.V. All rights reserved.

MSC: 46L87

Subj. Class: Quantum mechanics; Non-commutative geometry

Keywords: Non-commutative geometry; Serre-Swan theorem; Hilbert C\*-module

## 1. Introduction

The Serre–Swan theorem [8] is described as follows.

**Theorem 1.1** (Serre–Swan). Let  $\Omega$  be a connected compact Hausdorff space and  $C(\Omega)$  the algebra of all complex valued continuous functions on  $\Omega$ . Assume that X is a module over

E-mail address: kawamura@kurims.kyoto-u.ac.jp (K. Kawamura).

 $C(\Omega)$ . Then X is finitely generated projective iff there is a complex vector bundle E on  $\Omega$  such that X is isomorphic onto the module of all continuous sections of E.

By Theorem 1.1, finitely generated projective modules over  $C(\Omega)$  and complex vector bundles on  $\Omega$  are in one-to-one correspondence up to isomorphisms. In non-commutative geometry [5,11], some class of modules over a non-commutative  $C^*$ -algebra  $\mathcal{A}$  are treated as vector bundles on a "non-commutative space"  $\mathcal{A}$ , generalizing Serre–Swan theorem for commutative  $C^*$ -algebras.

On the other hand, for a unital general non-commutative  $C^*$ -algebra  $\mathcal{A}$ , there is a uniform Kähler bundle ( $\mathcal{P}$ , p, B) [3] unique up to equivalence class of  $\mathcal{A}$ , such that  $\mathcal{A}$  is \* isomorphic onto a uniform Kähler function algebra on ( $\mathcal{P}$ , p, B), what is a natural generalization of Gel'fand representation. We carefully review the uniform Kähler bundle and the functional representation of non-commutative  $C^*$ -algebras in Section 2. Under the above consideration, we state the following theorem which is a version of the Serre–Swan theorem generalized to non-commutative  $C^*$ -algebras.

**Theorem 1.2.** Let X be a Hilbert C<sup>\*</sup>-module over a unital C<sup>\*</sup>-algebra  $\mathcal{A}$ , ( $\mathcal{P}$ , p, B) the uniform Kähler bundle of  $\mathcal{A}$ ,  $\mathcal{K}_u(\mathcal{P})$  the C<sup>\*</sup>-algebra of uniform Kähler functions on  $\mathcal{P}$  and  $f : \mathcal{A} \cong \mathcal{K}_u(\mathcal{P})$  the Gel'fand representation of  $\mathcal{A}$ :

- (i) There is a complex vector bundle E<sub>X</sub> on P with a hermitian metric H and a flat connection D and a bundle map P<sub>X</sub> from the trivial vector bundle X × P on P to E<sub>X</sub> with dense image, at each fiber.
- (ii) Let  $\Gamma_X \equiv (P_X)_*(\Gamma_{\text{const}}(X \times \mathcal{P})) \subset \Gamma_{\text{hol}}(\mathcal{E}_X)$ , where  $\Gamma_{\text{const}}(X \times \mathcal{P})$  is the set of all constant sections of  $X \times \mathcal{P}$  and  $\Gamma_{\text{hol}}(\mathcal{E}_X)$  is the set of all holomorphic sections of  $\mathcal{E}_X$ . Then  $\Gamma_X$  is a Hilbert  $\mathcal{K}_u(\mathcal{P})$ -module with the right \*-action

$$\Gamma_X \times \mathcal{K}_u(\mathcal{P}) \to \Gamma_X,$$
  
(s, l)  $\mapsto$  s \* l = s · l +  $\sqrt{-1}D_{X_l}s$  ((s, l)  $\in \Gamma_X \times \mathcal{K}_u(\mathcal{P})$ )

and the  $C^*$ -inner product

$$H|_{\Gamma_X \times \Gamma_X} : \Gamma_X \times \Gamma_X \to \mathcal{K}_u(\mathcal{P}),$$

where  $X_l$  is the holomorphic part of the complex Hamiltonian vector field of  $l \in \mathcal{K}_u(\mathcal{P}) \subset C^{\infty}(\mathcal{P})$  with respect to the Kähler form of  $\mathcal{P}$ .

(iii) Under an identification  $f : \mathcal{A} \cong \mathcal{K}_u(\mathcal{P}), \Gamma_X$  is isomorphic to X as a Hilbert  $\mathcal{A}$ -module.

In Section 3.1, we introduce the atomic bundle  $\mathcal{E}_X$  of a Hilbert  $C^*$ -module X, which is a Hilbert bundle on  $\mathcal{P}$ . We discuss its geometrical structure in Section 3.3. In Section 4.1, we define a flat connection D on the atomic bundle. In Section 4.2, we prove that any connection on the atomic bundle defines a \*-action of the algebra of smooth functions on  $\mathcal{P}$  on the vector space of holomorphic sections of  $\mathcal{E}_X$ . In Section 5, we give a proof of Theorem 1.2.

Serre-Swan theorem

| 4 | 2 | 7 | 7 |
|---|---|---|---|
|   |   |   |   |

| Here we summarize correspondences between geometry and algebra |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

Gel'fand representation

|     | space               | algebra                                                                                    |     | vector<br>bundle                | module                   |
|-----|---------------------|--------------------------------------------------------------------------------------------|-----|---------------------------------|--------------------------|
| CG  | Ω                   | $C(\Omega)$<br>pointwise<br>product                                                        | CG  | $E \rightarrow \Omega$          | $\Gamma(E)$<br>pointwise |
| NCG | $\mathcal{P} \to B$ | $\left \begin{array}{c} \mathcal{K}_u(\mathcal{P}) \\ *\text{-product} \end{array}\right $ | NCG | $\mathcal{E}_X \to \mathcal{P}$ | $\Gamma_X$<br>*-action   |

where we call respectively, CG = commutative geometry as a geometry associated with commutative*C*\*-algebras, and NCG = non-commutative geometry as a geometry associated with non-commutative*C*\*-algebras by following [4].

## 2. Preparation

## 2.1. Uniform Kähler bundles

We start from the geometric characterization of the set of all pure states and the spectrum of a  $C^*$ -algebra [3]. Assume now that E and M are topological spaces.

**Definition 2.1.**  $(E, \mu, M)$  is called a uniform Kähler bundle if it satisfies the following conditions:

- (i)  $\mu$  is an open, continuous surjection between E and M,
- (ii) the topology of E is induced by a given uniformity,
- (iii) each fiber  $E_m \equiv \mu^{-1}(m)$  is a Kähler manifold.

The local triviality of uniform Kähler bundle is not assumed. M is, in general, neither compact nor Hausdorff.

We simply denote  $(E, \mu, M)$  by *E*. For uniform spaces, see [2]. Any metric space is a uniform space. Examples and relations with concrete  $C^*$ -algebras are given in Example 2.6. Roughly speaking, the fibers of the uniform Kähler bundle taken into account the non-commutativity of the  $C^*$ -algebra.

**Definition 2.2.** Two uniform Kähler bundles  $(E, \mu, M), (E', \mu', M')$  are isomorphic if there is a pair  $(\beta, \phi)$  of a uniform homeomorphism  $\beta : E \to E'$  and a homeomorphism  $\phi : M \to$ M', such that  $\mu' \circ \beta = \phi \circ \mu$  and any restriction  $\beta|_{\mu^{-1}(m)} : \mu^{-1}(m) \to (\mu')^{-1}(\phi(m))$  is a holomorphic Kähler isometry for any  $m \in M$ . We call  $(\beta, \phi)$  a uniform Kähler isomorphism between  $(E, \mu, M)$  and  $(E', \mu', M')$ .

For example, any Kähler manifold N is a uniform Kähler bundle with a one-point set as the base space. In the same way, the metric direct sum of Kähler manifolds  $\{N_i\}_{i=1}^n$  is a uniform Kähler bundle with a *n*-point set as base space, endowed with the discrete topology.

Any compact Hausdorff space X is a uniform space. X is a uniform Kähler bundle with zero-dimensional fiber with itself as the base space [2].

We explain the non-trivial third example of uniform Kähler bundles as follows. Let  $\mathcal{A}$  a unital  $C^*$ -algebra. Denote  $\mathcal{P}$  the set of all pure states of  $\mathcal{A}$ , endowed with the  $w^*$ -uniformity, i.e. the uniformity which induces the  $w^*$ -topology. By the GNS representation of  $\mathcal{A}$ , there is a natural projection p from  $\mathcal{P}$  onto the spectrum B of  $\mathcal{A}$ , the set of all equivalence classes of irreducible representations of  $\mathcal{A}$ . The projection p is continuous when B is endowed with the Jacobson topology [10].

If  $\mathcal{A}$  is commutative, then  $\mathcal{P} \cong B \cong$  "the set of all maximal ideals of  $\mathcal{A}$ " is a compact Hausdorff space. In [3] the following results are proved.

**Theorem 2.3** (Reduced atomic realization). For any unital  $C^*$ -algebra  $\mathcal{A}$ ,  $(\mathcal{P}, p, B)$  is a uniform Kähler bundle.

Let  $(\mathcal{H}_b, \pi_b)$  be an irreducible representation belonging to  $b \in B$ . Then  $\rho \in \mathcal{P}$  corresponds  $[x_\rho] \in \mathcal{P}(\mathcal{H}_b) \equiv (\mathcal{H}_b \setminus \{0\}) / \mathbb{C}^{\times}$ , where  $\rho = \omega_{x_\rho} \circ \pi_b$  and  $\omega_{x_\rho}$  denotes a vector state  $\omega_{x_\rho} = \langle x_\rho | (\cdot) x_\rho \rangle$ . Then  $\mathcal{P}_b$  has a Kähler manifold structure induced by the bijection

$$\tau^b: \mathcal{P}_b \to \mathcal{P}(\mathcal{H}_b), \quad \tau^b(\rho) \equiv [x_\rho].$$
 (2.1)

The Kähler distance  $d_b$  on a fiber  $\mathcal{P}_b \equiv \mathcal{P}(\mathcal{H}_b)$  is given by

$$d_b(\rho, \rho') \equiv \sqrt{2} \operatorname{arcos} |\langle x_\rho | x_{\rho'} \rangle| \quad (\rho, \rho' \in \mathcal{P}_b),$$

which is the length of shortest geodesic arc between  $\rho$  and  $\rho'$  in  $\mathcal{P}_b$ .

**Theorem 2.4.** Let  $A_i$  be  $C^*$ -algebras with associated uniform Kähler bundles ( $\mathcal{P}_i$ ,  $p_i$ ,  $B_i$ ), i = 1, 2. Then  $A_1$  and  $A_2$  are \* isomorphic if and only if ( $\mathcal{P}_1$ ,  $p_1$ ,  $B_1$ ) and ( $\mathcal{P}_2$ ,  $p_2$ ,  $B_2$ ) are isomorphic as uniform Kähler bundles.

By this theorem, the uniform Kähler bundle  $(\mathcal{P}, p, B)$  associated with  $\mathcal{A}$  is uniquely determined up to uniform Kähler isomorphisms. From now on, we call it *the uniform Kähler bundle associated with*  $\mathcal{A}$ .

## 2.2. A functional representation of non-commutative $C^*$ -algebras

We reconstruct  $\mathcal{A}$  from the uniform Kähler bundle  $(\mathcal{P}, p, B)$  associated with  $\mathcal{A}$ . Since  $\mathcal{P}_b \equiv p^{-1}(b) \subset \mathcal{P}$  is a Kähler manifold for each  $b \in B$ , we can consider the fiberwise smooth (= smooth in  $\mathcal{P}_b$  for each  $b \in B$ ) functions on  $\mathcal{P}$ . Let

 $C^{\infty}(\mathcal{P})$ : the set of all fiberwise smooth complex valued functions on  $\mathcal{P}$ .

For  $l \in C^{\infty}(\mathcal{P})$ , we denote  $X_l$  the holomorphic Hamiltonian vector field of l, defined by the equation

$$\omega_{\rho}((X_{l})_{\rho}, \bar{Y}_{\rho}) = \partial_{\rho} l(\bar{Y}_{\rho}) \quad (\bar{Y}_{\rho} \in \bar{T}_{\rho} \mathcal{P}) \quad \text{for } \rho \in \mathcal{P},$$
(2.2)

where  $\omega$  denotes the Kähler form on  $\mathcal{P}$  (defined on each fiber),  $\bar{\partial}$  the anti-holomorphic differential operator on  $C^{\infty}(\mathcal{P})$  and  $\bar{T}_{\rho}\mathcal{P}$  denotes the anti-holomorphic tangent space of  $\mathcal{P}$  at  $\rho \in \mathcal{P}$ . A product \* on  $C^{\infty}(\mathcal{P})$  is defined by

$$l * m \equiv l \cdot m + \sqrt{-1} X_m l \quad (l, m \in C^{\infty}(\mathcal{P})).$$
(2.3)

If the involution \* is defined on  $C^{\infty}(\mathcal{P})$  by complex conjugation, then  $(C^{\infty}(\mathcal{P}), *)$  becomes a \*-algebra with unit which is not associative in general. By using (2.2), the \*-product can be written as follows:

$$l * m = l \cdot m + \sqrt{-1}\omega(\bar{X}_l, X_m).$$

Let us introduce the Kähler bracket  $\{\cdot, \cdot\}$  with respect to  $\omega$ , by

$$\{l, m\} \equiv \omega(\bar{X}_l, X_m) + \omega(X_l, \bar{X}_m) \quad (l, m \in C^{\infty}(\mathcal{P})).$$

Then the following equality holds:

$$l * m - m * l = \sqrt{-1\{l, m\}} \quad (l, m \in C^{\infty}(\mathcal{P})).$$
(2.4)

**Theorem 2.5** (Gel'fand representation of non-commutative  $C^*$ -algebras). For a noncommutative  $C^*$ -algebra A, the Gel'fand representation

 $f_A(\rho) \equiv \rho(A) \quad (A \in \mathcal{A}, \rho \in \mathcal{P}),$ 

gives an injective \* homomorphism of unital \*-algebras:

$$f: \mathcal{A} \to C^{\infty}(\mathcal{P}), \quad A \mapsto f_A,$$

where  $C^{\infty}(\mathcal{P})$  is endowed with the above defined \*-product. For a function l in the image  $f(\mathcal{A})$  of the map f, set

$$\|l\| \equiv \sup_{\rho \in \mathcal{P}} |(\bar{l} * l)(\rho)|^{1/2}.$$
(2.5)

This defines a C<sup>\*</sup>-norm on the associative \*-subalgebra f(A). By this norm, (f(A), \*) is isomorphic to A.

Furthermore  $f(\mathcal{A})$  is precisely the subset  $\mathcal{K}_u(\mathcal{P}) \subset C^{\infty}(\mathcal{P})$  defined by

$$\mathcal{K}_{u}(\mathcal{P}) \equiv \left\{ l \in C^{\infty}(\mathcal{P}) : \frac{D^{2}l = 0}{\bar{l} * l, l * \bar{l}, l \text{ are uniformly continuous on } \mathcal{P} \right\},$$
(2.6)

where D and  $\overline{D}$  are the holomorphic and anti-holomorphic part, respectively, of covariant derivative of Kähler metric defined on each fiber of  $\mathcal{P}$ . Hence, the following equivalence of  $C^*$ -algebras holds:

$$\mathcal{A}\cong\mathcal{K}_u(\mathcal{P}).$$

We call  $(\mathcal{K}_u(\mathcal{P}), *)$  the  $C^*$ -algebra of uniform Kähler functions on  $\mathcal{P}$ .

By the above results, we obtain a fundamental correspondence between algebra and geometry as follows:

| unital commutative $C^*$ -algebra               | $\Leftrightarrow$ | compact Hausdorff space                                |
|-------------------------------------------------|-------------------|--------------------------------------------------------|
| $\cap$                                          |                   | $\cap$                                                 |
| unital generally non-commutative $C^*$ -algebra | $\Leftrightarrow$ | uniform Kähler bundle associated with a $C^*$ -algebra |

The upper correspondence above is just the Gel'fand representation of unital commutative  $C^*$ -algebras.

**Example 2.6.** Assume that  $\mathcal{H}$  is a separable infinite dimensional Hilbert space.

- (i) When A ≡ L(H) is the algebra of all bounded linear operators on H, the uniform Kähler bundle of A is (P(H) ∪ P<sub>-</sub>, p, 2<sup>[0,1]</sup> ∪ {b<sub>0</sub>}), where P(H) is the projective Hilbert space of H, P<sub>-</sub> is the union of a family of projective Hilbert spaces indexed by the power set of the closed interval [0, 1] and {b<sub>0</sub>} is the one-point set corresponding to the equivalence class of identity representation (H, id<sub>L(H)</sub>) of L(H) on H. Since the primitive spectrum of L(H) is a two-point set, the topology of 2<sup>[0,1]</sup> ∪ {b<sub>0</sub>} is equal to {Ø, 2<sup>[0,1]</sup>, {b<sub>0</sub>}, 2<sup>[0,1]</sup> ∪ {b<sub>0</sub>} [7]. In this way, the base space of the uniform Kähler bundle is not always a singleton when the C\*-algebra is type I.
- (ii) For the C\*-algebra  $\mathcal{A}$  generated by the Weyl form of the one-dimensional canonical commutation relation  $U(s)V(t) = e^{\sqrt{-1}st}V(t)U(s)$  for  $s, t \in \mathbf{R}$ , its uniform Kähler bundle is  $(\mathcal{P}(\mathcal{H}), p, \{1pt\})$ . The spectrum is a one-point set  $\{1pt\}$  since von Neumann uniqueness theorem [1].
- (iii) The *CAR-algebra*  $\mathcal{A}$  is a UHF algebra with the nest  $\{M_{2^n}(\mathbf{C})\}_{n \in \mathbf{N}}$ . The uniform Kähler bundle has the base space  $2^{\mathbf{N}}$  and each fiber on  $2^{\mathbf{N}}$  is a separable infinite dimensional projective Hilbert space where  $2^{\mathbf{N}}$  is the power set of the set  $\mathbf{N}$  of all natural numbers with trivial topology, that is, the topology of  $2^{\mathbf{N}}$  is just  $\{\emptyset, 2^{\mathbf{N}}\}$ . In general, the Jacobson topology of the spectrum of a simple  $C^*$ -algebra is trivial [7].

## 3. The atomic bundle of a Hilbert C\*-module

The aim of this section is the construction of a natural vector bundle for a given Hilbert  $C^*$ -module over a  $C^*$ -algebra.

## 3.1. The construction of the atomic bundle

Before starting to construct the atomic bundle of a Hilbert  $C^*$ -module, we state the definition of a Hilbert  $C^*$ -module.

**Definition 3.1** ([6]). *X* is a Hilbert  $C^*$ -module over a  $C^*$ -algebra  $\mathcal{A}$  if *X* is a right  $\mathcal{A}$ -module and there is an  $\mathcal{A}$  valued sesquilinear form

 $\langle \cdot | \cdot \rangle : X \times X \to \mathcal{A},$ 

which satisfies the following conditions:

$$\begin{aligned} \langle \eta | \xi a \rangle &= \langle \eta | \xi \rangle a \quad (\eta, \xi \in X, a \in \mathcal{A}), \qquad (\langle \eta | \xi \rangle)^* &= \langle \xi | \eta \rangle \quad (\eta, \xi \in X), \\ \langle \xi | \xi \rangle &\geq 0 \quad (\xi \in X), \qquad \langle \xi | \xi \rangle &= 0 \Rightarrow \xi = 0 \quad (\xi \in X), \end{aligned}$$

and X is complete with respect to the A-valued norm defined by

$$\|\xi\| \equiv \|\langle \xi|\xi\rangle\|^{1/2} \quad (\xi \in X).$$
(3.1)

Let X be a Hilbert C<sup>\*</sup>-module over a unital C<sup>\*</sup>-algebra  $\mathcal{A}$  and  $(\mathcal{P}, p, B)$  the uniform Kähler bundle associated with  $\mathcal{A}$ . Defining a closed subspace  $N_{\rho}$  of X with  $\rho \in \mathcal{P}$  by

$$N_{\rho} \equiv \{\xi \in X : \rho(\|\xi\|^2) = 0\},\tag{3.2}$$

we consider the quotient vector space

$$\mathcal{E}^{o}_{X,\rho} \equiv X/N_{\rho},\tag{3.3}$$

equipped with the sesquilinear form  $\langle \cdot | \cdot \rangle_{\rho}$  on  $\mathcal{E}^{o}_{X,\rho}$  defined by

$$\langle \cdot | \cdot \rangle_{\rho} : \mathcal{E}^{o}_{X,\rho} \times \mathcal{E}^{o}_{X,\rho} \to \mathbf{C}, \qquad \langle [\xi]_{\rho} | [\eta]_{\rho} \rangle_{\rho} \equiv \rho(\langle \xi | \eta \rangle) \quad ([\xi]_{\rho}, [\eta]_{\rho} \in \mathcal{E}^{o}_{X,\rho}).$$

where

$$[\xi]_{\rho} \equiv \xi + N_{\rho} \in \mathcal{E}^{o}_{X,\rho} \quad (\xi \in X).$$

$$(3.4)$$

Then  $\langle \cdot | \cdot \rangle_{\rho}$  becomes an inner product on  $\mathcal{E}_{X,\rho}^{o}$ . Let  $\mathcal{E}_{X,\rho}$  be the completion of  $\mathcal{E}_{X,\rho}^{o}$  by the norm  $\| \cdot \|_{\rho} \equiv (\langle \cdot | \cdot \rangle_{\rho})^{1/2}$ . We obtain a Hilbert space  $(\mathcal{E}_{X,\rho}, \langle \cdot | \cdot \rangle_{\rho})$  from a Hilbert  $C^*$ -module X for each pure state  $\rho \in \mathcal{P}$ . We note that  $\mathcal{E}_{X_{\rho}}$  and  $\mathcal{E}_{X_{\rho'}}$  are equivalent Hilbert spaces when  $\rho, \rho' \in \mathcal{P}_b$ .

**Definition 3.2.** The atomic bundle  $\mathcal{E}_X = (\mathcal{E}_X, \Pi_X, \mathcal{P})$  of a Hilbert  $C^*$ -module X over a  $C^*$ -algebra  $\mathcal{A}$  is defined as the fiber bundle  $\mathcal{E}_X$  on  $\mathcal{P}$ :

$$\mathcal{E}_X \equiv \bigcup_{\rho \in \mathcal{P}} \mathcal{E}_{X,\rho},$$

where the projection map  $\Pi_X : \mathcal{E}_X \to \mathcal{P}$  is defined by  $\Pi_X(x) = \rho$  for  $x \in \mathcal{E}_{X,\rho}$ .

The atomic bundle is the collection of its *B*-fibers, where for  $b \in B$ , the *B*-fiber  $\mathcal{E}_X^b$  of *X* is the bundle  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ , defined by

$$\mathcal{E}_X^b \equiv \bigcup_{\rho \in \mathcal{P}_b} \mathcal{E}_{X,\rho}, \qquad \Pi_X^b : \mathcal{E}_X^b \to \mathcal{P}_b, \quad \Pi_X^b \equiv \Pi_X|_{\mathcal{E}_X^b}.$$

## 3.2. Unitary group action on the atomic bundle

Let G be the group of all unitary elements in A. Define an action  $\chi$  of G on P by

$$\chi_u(\rho) \equiv \rho \circ \operatorname{Ad} u^* \quad (u \in G, \, \rho \in \mathcal{P}).$$

Then  $\chi_u$  maps  $\mathcal{P}_b$  to  $\mathcal{P}_b$  for each  $b \in B$  and  $u \in G$ .

**Lemma 3.3.** *G* acts transitively on  $\mathcal{P}_b$  by Kähler automorphisms.

**Proof.** By irreducibility of the GNS representation of pure states, the statement follows immediately.  $\Box$ 

Next, define an action  $t^b$  of G on  $\mathcal{E}^o_X = \bigcup_{\rho \in \mathcal{P}} \mathcal{E}^o_{X,\rho}$  by

 $t_{u}^{b}([\xi]_{\rho}) \equiv [\xi u^{*}]_{\chi_{u}(\rho)} \quad (u \in G, [\xi]_{\rho} \in \mathcal{E}_{X,\rho}^{o}),$ 

 $t^b$  is well defined since the map  $\xi \mapsto \xi u^*$  maps  $N_\rho$  to  $N_{\chi_u(\rho)}$ . As  $t^b_u$  is a unitary map from  $\mathcal{E}^o_{X,\rho}$  to  $\mathcal{E}^o_{X,\chi_u(\rho)}$ , we can extend  $t^b_u$  as a unitary map from  $\mathcal{E}_{X,\rho}$  to  $\mathcal{E}_{X,\chi_u(\rho)}$ . We note that

$$t_{cu}^{b}(x) = \bar{c}t_{u}^{b}(x) \quad (u \in G, c \in U(1)).$$
 (3.5)

We define an action t of G on  $\mathcal{E}_X$  by  $t|_{\mathcal{E}_X^b} \equiv t^b$ ,  $b \in B$ . Then  $T \equiv (t, \chi)$  is an action of G on  $(\mathcal{E}_X, \Pi_X, \mathcal{P})$  by bundle automorphisms. This action preserves B-fibers  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$ ,  $b \in B$ , too.

Consider now the Hopf bundle  $(S(\mathcal{H}_b), \mu_b, \mathcal{P}_b)$  (see Appendix A). For the fibrations  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$  and  $(S(\mathcal{H}_b), \mu_b, \mathcal{P}_b)$ , define their fiber product  $\mathcal{E}_X^{b,U(1)} \subset \mathcal{E}_X^b \times S(\mathcal{H}_b)$  by

$$\mathcal{E}_X^{b,U(1)} \equiv \mathcal{E}_X^b \times_{\mathcal{P}_b} S(\mathcal{H}_b) = \{(x,h) \in \mathcal{E}_X^b \times S(\mathcal{H}_b) : \Pi_X^b(x) = \mu_b(h) \}.$$

Thus an action  $\sigma^b$  of G on  $\mathcal{E}^{b,U(1)}_{X}$  is defined by

 $\sigma_u^b(x,h) \equiv (t_u(x),\pi_b(u)h) \quad ((x,h) \in \mathcal{E}_X^{b,U(1)}, u \in G).$ 

We note that a representation  $(\mathcal{H}_b, \pi_b)$  of  $\mathcal{A}$  induces an action of G on  $S(\mathcal{H}_b)$ .

**Lemma 3.4.** For  $(x, h) \in \mathcal{E}_X^{b, U(1)}$  and  $u \in G$ , if  $\sigma_u^b(x, h) = (y, h)$ , then x = y.

**Proof.** We have just to consider the case  $x \in \mathcal{E}^o_{X,\rho}$ . Let  $x = [\xi]_{\rho}$ . By assumption,  $(y, h) = ([\xi u^*]_{\chi_u(\rho)}, \pi_b(u)h)$ . Hence  $h = \pi_b(u)h$  or, equivalently

$$\pi_b(u^*)h = h. \tag{3.6}$$

By definition of fiber product, we have  $\chi_u(\rho) = \rho$  and  $y = [\xi u^*]_{\rho}$ . By using the above results, we obtain:

$$\|x - y\|_{\rho}^{2} = \rho(\|\xi - \xi u^{*}\|^{2}) = \rho(\|\xi\|^{2}) + \rho(u\|\xi\|^{2}u^{*}) - \rho(\langle\xi|\xi\rangle u^{*}) - \rho(u\langle\xi|\xi\rangle),$$

with  $\rho = \langle h | \pi_b(\cdot) h \rangle$ . Therefore (3.6) implies

$$\|x - y\|_{\rho}^{2} = 2\rho(\|\xi\|^{2}) - \rho(\langle\xi|\xi\rangle) - \rho(\langle\xi|\xi\rangle) = 0.$$

Hence we obtain x = y.

**Definition 3.5.**  $F_X^b$  is the set of all orbits of G in  $\mathcal{E}_X^{b,U(1)}$ .

| ſ |  | 1 |  |
|---|--|---|--|
| L |  |   |  |

Let  $\mathcal{O}(x, h) \in F_X^b$  be the orbit containing  $(x, h) \in \mathcal{E}_X^{b, U(1)}$ .

$$\mathcal{O}(x,h) = \{\sigma_u^b(x,h) : u \in G\} = \{(t_u(x), \pi_b(u)h) : u \in G\}.$$

By Lemma 3.4, any element of  $\mathcal{O}(x, h)$  is written as  $(y_{h'}, h')$ , where  $y_{h'}$  is an element of  $\mathcal{E}_X^b$  determined by  $h' \in S(\mathcal{H}_b)$  uniquely. Hence  $F_X^b$  is a family of spheres in  $\mathcal{E}_X^{b,U(1)}$ , each homeomorphic to  $S(\mathcal{H}_b)$ .

**Lemma 3.6.** For (y, h') in  $\mathcal{O}(x, h)$ , if  $y = x \neq 0$ , then h = h'.

**Proof.** By the choice of (x, h'), there is  $u \in G$  such that  $\sigma_u^b(x, h) = (x, h')$ .  $t_u^b(x) = x$  and  $\pi_b(u)h = h'$ . Since  $\mu_b(h') = \prod_X^b(x) = \mu_b(h)$ , there is  $c \in U(1)$  such that h' = ch. Hence we can choose u = cI. Then we have

$$x = t_u^b(x) = t_{cI}^b(x) = \bar{c}t_I^b(x) = \bar{c}x,$$

by (3.5). Therefore c = 1 and we obtain h = h' when  $x \neq 0$ .

**Corollary 3.7.** For  $c \in U(1)$ ,  $\mathcal{O}(x, ch) = \mathcal{O}(cx, h)$ .

Furthermore  $\mathcal{O}(0, h) = \{(0, h') : h' \in S(\mathcal{H}_b)\}$ . Let  $(y, h') \in \mathcal{O}(x, h) \cap (\mathcal{E}_{X, \mu_b(h)} \times S(\mathcal{H}_b))$ . Then there is  $u \in G$  such that  $(y, h') = \sigma_u(x, h)$ . By the choice of  $(y, h'), h' \in \mu_b^{-1}(\mu_b(h))$ . Hence there is  $c \in U(1)$  such that h' = ch.

**Proposition 3.8.**  $F_X^b$  is naturally identified with the Hilbert space  $\mathcal{E}_{X,\rho}$ , for each  $\rho \in \mathcal{P}_b$ .

#### 3.3. Structure of the atomic bundle

We shall prove that the atomic bundle has a Hilbert bundle structure. Let  $(S(\mathcal{H}_b) \times_{U(1)} F_X^b, \pi_{F_X^b}, \mathcal{P}(\mathcal{H}_b))$  be the associated bundle of  $(S(\mathcal{H}_b), \mu_b, \mathcal{P}(\mathcal{H}_b))$  by  $F_X^b$  where the Hilbert space structure on  $F_X^b$  is defined according to Proposition 3.8.

**Lemma 3.9.** Any element of  $S(\mathcal{H}_b) \times_{U(1)} F_X^b$  can be written as  $[(h, \mathcal{O}(x, h))]$  where  $\mathcal{O}(x, h) \in F_X^b$ .

**Proof.** By definition of the associated bundle (Appendix A.3), an element of  $S(\mathcal{H}_b) \times_{U(1)} F_X^b$ is the U(1)-orbit  $[(h, \mathcal{O}(x, k))]$ . Take an element  $[(h, \mathcal{O}(y, k))] \in S(\mathcal{H}_b) \times_{U(1)} F_X^b$ . By definition of  $\mathcal{O}(y, k)$  and the transitivity of the action of G on  $S(\mathcal{H})$ , there is  $u \in G$  such that h = uk and  $(t_u^b(y), h) \in \mathcal{O}(y, k)$ . Denote  $x \equiv t_u(y)$ . Then  $\mathcal{O}(x, h) = \mathcal{O}(y, k)$ . Hence  $[(h, \mathcal{O}(y, k))] = [(h, \mathcal{O}(x, h))]$ .

From now on, we shall denote

 $[h, x] \equiv [(h, \mathcal{O}(x, h))] \in S(\mathcal{H}_b) \times_{U(1)} F_X^b$ 

for  $h \in S(\mathcal{H})$  and  $x \in \mathcal{E}_X^b$ .

Recall for each  $b \in B$ ,  $\mathcal{P}_b$  is a Kähler manifold which is isomorphic to a projective Hilbert space  $\mathcal{P}(\mathcal{H}_b)$  by the map  $\tau^b$ .

**Theorem 3.10.** For each  $b \in B$ , the *B*-fiber  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$  at *b* is a locally trivial Hilbert bundle isomorphic to  $(S(\mathcal{H}_b) \times_{U(1)} F_X^b, \pi_{F_Y^b}, \mathcal{P}(\mathcal{H}_b))$ .

**Proof.** Define a map  $\Psi^b : \mathcal{E}_X^b \to S(\mathcal{H}_b) \times_{U(1)} F_X^b$  by  $\Psi^b(x) \equiv [h_x, x]$   $(x \in \mathcal{E}_X^b)$ , where  $h_x \in \mu_b^{-1}(\Pi_X^b(x))$ . If  $\Psi^b(x) = \Psi^b(y)$  for  $x, y \in \mathcal{E}_X^b$ , then [h, x] = [h', y]. Therefore there is  $c \in U(1)$  such that  $(h, \mathcal{O}(x, h))c = (h', \mathcal{O}(y, h'))$ . By  $h' = \bar{c}h$  and Corollary 3.7,  $\mathcal{O}(y, \bar{c}h) = \mathcal{O}(x, \bar{c}h)$ . By Lemma 3.4, we get x = y, so that  $\Psi^b$  is injective. By definition of  $F_X^b, \Psi^b$  is surjective, hence  $\Psi^b$  is a bijection. We obtain a set-theoretical isomorphism  $(\Psi^b, \tau^b)$  of fibrations between  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$  and  $(S(\mathcal{H}_b) \times_{U(1)} F_X^b, \pi_{F_X^b}, \mathcal{P}_b)$  such that any restriction  $\Psi^b|_{\mathcal{E}_{X,\rho}}$  of  $\Psi^b$  at a fiber  $\mathcal{E}_{X,\rho}$  is a unitary between  $\mathcal{E}_{X,\rho}$  and  $\pi_{F_X^b}^{-1}(\rho)$  for  $\rho \in \mathcal{P}_b$ .

This isomorphism induces on  $(\mathcal{E}_X^b, \Pi_X^b, \mathcal{P}_b)$  the Hilbert bundle structure of the associated bundle  $(S(\mathcal{H}_b) \times_{U(1)} F_X^b, \pi_{F_v^b}, \mathcal{P}_b)$ .

By Theorem 3.10 and Definition 3.2, we have constructed in a canonic way a locally trivial Hilbert bundle from a Hilbert  $C^*$ -module and we understand that the atomic bundle of a Hilbert  $C^*$ -module is a family of associated bundles of Hopf bundles indexed by spectrum *B*:

$$\mathcal{E}_X \cong \bigcup_{b \in B} (S(\mathcal{H}_b) \times_{U(1)} F_X^b).$$

We conclude this section by introducing a bundle map to be used in Section 5. Let  $(X \times \mathcal{P}, t, \mathcal{P})$  be the trivial complex vector bundle on  $\mathcal{P}$ . Then we introduce the map

$$P_X: X \times \mathcal{P} \to \mathcal{E}_X; \quad P_X(\xi, \rho) \equiv [\xi]_\rho \quad ((\xi, \rho) \in X \times \mathcal{P}).$$

$$(3.7)$$

The image  $P_X(X \times \mathcal{P}_b)$  is dense in  $\mathcal{E}_X^b$ , for every  $b \in B$ . Moreover  $P_X(\xi', \rho) = P_X(\xi, \rho)$  if and only if  $\xi' - \xi \in N_\rho$ , for  $\rho \in \mathcal{P}$ . Then  $(P_X, id)$  is a bundle map from  $(X \times \mathcal{P}, t, \mathcal{P})$  to  $(\mathcal{E}_X, \Pi_X, \mathcal{P})$ .

## 4. Connection and \*-action

In this section, we define a flat connection D on the atomic bundle and prove a relation between the associativity of \*-action defined by D and the flatness of D.

#### 4.1. The atomic connection of the atomic bundle

To define the \*-action of  $(C^{\infty}(\mathcal{P}), *)$  on the smooth sections of the atomic bundle of a Hilbert  $C^*$ -module *X*, we define a connection *D* of  $\mathcal{E}_X$ , called the atomic connection.

Let  $\mathcal{E}_X = (\mathcal{E}_X, \Pi_X, \mathcal{P})$  be the atomic bundle of a Hilbert  $C^*$ -module *X* over a  $C^*$ -algebra  $\mathcal{A}$ . Let  $\Gamma(\mathcal{E}_X)$  be the set of all bounded sections of  $\mathcal{E}_X$ , that is,  $\Gamma(\mathcal{E}_X) \ni s : \mathcal{P} \to \mathcal{E}_X$  is a right inverse of  $\Pi_X$  and satisfies

$$\|s\| \equiv \sup_{\rho \in \mathcal{P}} \|s(\rho)\|_{\rho} < \infty.$$
(4.1)

By standard operations,  $\Gamma(\mathcal{E}_X)$  is a complex linear space, isometric to the Banach direct sum  $\bigoplus_{\rho \in \mathcal{P}} \mathcal{E}_{X,\rho}$ . By Theorem 3.10, we can consider the differentiability of  $s \in \Gamma(\mathcal{E}_X)$  at each *B*-fiber  $s|_{\mathcal{P}_b} : \mathcal{P}_b \to \mathcal{E}_X^b$  for each  $b \in B$  in the sense of Fréchet differentiability of Hilbert manifolds. Define  $\Gamma_{\infty}(\mathcal{E}_X)$  the set of all *B*-fiberwise smooth sections in  $\Gamma(\mathcal{E}_X)$ .

A hermitian metric H is defined on  $\mathcal{E}_X$  by

$$H_{\rho}(s,s') \equiv \langle s(\rho) | s'(\rho) \rangle_{\rho} \tag{4.2}$$

for  $\rho \in \mathcal{P}$ ,  $s, s' \in \Gamma_{\infty}(\mathcal{E}_X)$  [9]. Let  $\mathfrak{X}(\mathcal{P})$  be the set of all *B*-fiberwise smooth vector fields of  $\mathcal{P}$ .

**Definition 4.1.** A connection on  $\mathcal{E}_X$  is a **C**-bilinear map D which is  $C^{\infty}(\mathcal{P})$ -linear with respect to  $\mathfrak{X}(\mathcal{P})$  and satisfies the Leibniz law with respect to  $\Gamma_{\infty}(\mathcal{E}_X)$ :

$$D_Y(s \cdot l) = \partial_Y l \cdot s + l \cdot D_Y s$$

for  $s \in \Gamma_{\infty}(\mathcal{E}_X)$ ,  $l \in C^{\infty}(\mathcal{P})$  and  $Y \in \mathfrak{X}(\mathcal{P})$ .

For  $h \in S(\mathcal{H}_b)$  we consider a trivializing neighborhood  $\mathcal{V}_h$  for the Hopf bundle (see Appendix A.1). For a fixed  $\rho \in \mathcal{V}_h$  and  $Y \in \mathfrak{X}(\mathcal{P}_b)$ , we denote by  $Y_{\rho}^h$  the corresponding tangent vector at  $\rho$  in local coordinates and by the linear operator of multiplication by number

$$-\frac{1}{2}\frac{\langle\beta_h(\rho)|Y_{\rho}^h\rangle}{1+\|\beta_h(\rho)\|^2}.$$

**Proposition 4.2.**  $D_{Y,\rho}^{h} \equiv \partial_{Y_{\rho}^{h}} + A_{Y,\rho}^{h}$  gives the local expression of a flat connection  $D^{b}$  on  $\mathcal{E}_{X}^{b}$ .

**Proof.** We prove the cocycle condition for the family of linear maps  $A \equiv \{A^h\}_{h \in S(\mathcal{H}_b)}$ , where  $A^h : \mathcal{H}_b \to \mathcal{L}(F_X^b)$  is defined by  $A^h(Y_\rho^h) = A^h_{Y,\rho}$ . For  $\rho \in \mathcal{P}_b$ , choose  $h, h' \in S(\mathcal{H}_b)$  such that  $\rho \in \mathcal{V}_h \cap \mathcal{V}_{h'}$ . The cocycle condition for A is given by formula (A.2) in Appendix A.5.

Let  $z' \equiv \beta_{h'}(\rho)$ ,  $z \equiv \beta_h(\rho)$ . By a simple computation, we get

$$-2 \cdot A_{X,\rho}^{h} = \frac{\langle z | X_{\rho}^{h} \rangle}{1 + \| z \|^{2}} = -2 \cdot A_{X,\rho}^{h'} - \frac{\langle h | X_{\rho}^{h'} \rangle}{\langle h | z' + h' \rangle},$$

and formula (A.2) holds. Therefore  $D_{Y,\rho}^h$  gives the local expression of a connection  $D^b$ . The curvature  $R^b$  of  $D^b$  can be expressed as:

$$R^b_{X,Y} = (dA)(X,Y) + (A \land A)(X,Y) \quad (X,Y \in \mathfrak{X}(\mathcal{P}_b)).$$

Since A is scalar,  $A \wedge A = 0$ . In a chart  $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$  of  $\rho \in \mathcal{P}_b$  and  $z = \beta_h(\rho) \in \mathcal{H}_h$ , we have

$$(d_z A)(X, Y) = X A^h_{Y,z} - Y A^h_{X,z} - A^h_{[X,Y],z}.$$

By simple computation we obtain  $(d_z A)(X, Y) = 0$ , so that  $R^b = 0$  and  $D^b$  is flat.

**Definition 4.3.** We call the connection in Proposition 4.2 the atomic connection of the atomic bundle.

#### 4.2. The \*-action of a function algebra on sections of the atomic bundle

By (2.3), the function space  $C^{\infty}(\mathcal{P})$  is a \*-algebra with \*-product which is generally not associative. We define the \*-action of  $(C^{\infty}(\mathcal{P}), *)$  on the smooth sections of the atomic bundle of a Hilbert  $C^*$ -module by using the atomic connection D of  $\mathcal{E}_X$ . We characterize algebraic properties, commutativity, associativity, of \*-action by D and the curvature of  $\mathcal{E}_X$  with respect to D. Now we denote by D any connection on  $\mathcal{E}_X$ .

**Definition 4.4.** We define the (right) \*-action of  $C^{\infty}(\mathcal{P})$  on  $\Gamma_{\infty}(\mathcal{E}_X)$  by

$$s * l \equiv s \cdot l + \sqrt{-1}D_{X_l}s$$

for  $l \in C^{\infty}(\mathcal{P})$  and  $s \in \Gamma_{\infty}(\mathcal{E}_X)$ , where  $X_l$  is the holomorphic Hamiltonian vector field of l with respect to the Kähler form of  $\mathcal{P}$ .

We give a geometric characterization of the above \*-action.

**Lemma 4.5.** For each  $s \in \Gamma_{\infty}(\mathcal{E}_X)$  and  $l, m \in C^{\infty}(\mathcal{P})$ , the following equations hold:

$$(s * l) * m - (s * m) * l = (\sqrt{-1}\{l, m\} + [D_{X_l}, D_{X_m}])s,$$
  

$$s * (l * m) - s * (m * l) = (\sqrt{-1}\{l, m\} + D_{[X_l, X_m]})s.$$

**Proof.** The first equation follows immediately by

$$(s * l) * m - (s * m) * l = \sqrt{-1} D_{X_m}(s \cdot l) + \sqrt{-1} ((D_{X_l}s) \cdot m + \sqrt{-1} D_{X_m} D_{X_l}s) - \sqrt{-1} D_{X_l}(s \cdot m) - \sqrt{-1} ((D_{X_m}s) \cdot l + \sqrt{-1} D_{X_l} D_{X_m}s),$$

since

 $X_m l - X_l m = \{l, m\}.$ 

The proof of the second equation is analogous.

#### Remark 4.6.

(i) By Lemma 4.5, the non-commutativity of \*-action of  $C^{\infty}(\mathcal{P})$  on  $\Gamma_{\infty}(\mathcal{E}_X)$  depends on the connection *D* of  $\mathcal{E}_X$  and the Kähler form of  $\mathcal{P}$ .

(ii) We denote three different notions, \*-action, \*-product and involution by the same symbol "\*" according to custom style.

Let *the associator* a(l, m) *of*  $l, m \in C^{\infty}(\mathcal{P})$  be an operator

$$a(l,m): \Gamma_{\infty}(\mathcal{E}_X) \to \Gamma_{\infty}(\mathcal{E}_X),$$

$$a(l,m)s \equiv (s*l)*m - s*(l*m) \quad (s \in \Gamma_{\infty}(\mathcal{E}_X)).$$

Then we have a relation between associativity and curvature.

**Proposition 4.7.** On  $\Gamma_{\infty}(\mathcal{E}_X)$  and for  $l, m \in C^{\infty}(\mathcal{P})$ , the following equation holds:

 $a(l,m) - a(m,l) = R_{X_l,X_m},$ 

where R is the curvature of  $\mathcal{E}_X$  with respect to D defined by

$$R_{Y,Z} \equiv [D_Y, D_Z] - D_{[Y,Z]} \quad (Y, Z \in \mathfrak{X}(\mathcal{P})).$$

## 5. A sectional representation of Hilbert C\*-modules

Let us summarize our notations. Let X be a Hilbert  $C^*$ -module over a unital  $C^*$ -algebra  $\mathcal{A}, \mathcal{K}_u(\mathcal{P})$  the image of the Gel'fand representation of  $\mathcal{A}$  and  $\mathcal{E}_X = (\mathcal{E}_X, \Pi_X, \mathcal{P})$  the atomic bundle of X. For the map  $P_X$  defined in (3.7), define a linear map

$$(P_X)_* : \Gamma(X \times \mathcal{P}) \to \Gamma(\mathcal{E}_X), \quad ((P_X)_*(s))(\rho) \equiv P_X(s(\rho), \rho)$$
  
(s \in \Gamma(X \times \mathcal{P}), \rho \in \mathcal{P}).

We define a subspace  $\Gamma_X$  of  $\Gamma(\mathcal{E}_X)$  as follows.

## **Definition 5.1.**

 $\Gamma_X \equiv (P_X)_*(\Gamma_{\text{const}}(X \times \mathcal{P})),$ 

where  $\Gamma_{\text{const}}(X \times \mathcal{P})$  is the subspace of  $\Gamma(X \times \mathcal{P})$  consisting of all constant sections.

**Remark 5.2.**  $\Gamma_X$  is quite smaller that the set of all holomorphic sections of  $\mathcal{E}_X$ . Actually, we shall see in Theorem 5.6 that the hermitian form, restricted to  $\Gamma_X$  has values in  $\mathcal{K}_u(\mathcal{P})$ .

We prepare some lemmata for the proof of the reconstruction theorem and explain how the structure of Hilbert  $C^*$ -module is interpreted as the geometrical structure of the atomic bundle.

For  $\xi \in X$ , we define a section  $s_{\xi} \in \Gamma(\mathcal{E}_X)$  of  $\mathcal{E}_X$  by

$$s_{\xi}(\rho) \equiv [\xi]_{\rho} \quad (\rho \in \mathcal{P}).$$

Define the map

$$\Psi: X \to \Gamma(\mathcal{E}_X), \qquad \Psi(\xi) \equiv s_{\xi} \quad (\xi \in X).$$

**Lemma 5.3.** The map  $\Psi$  is well defined and has the following properties:

- (i)  $\Psi$  is a linear isometry,
- (ii) for each  $\xi \in X$ ,  $\Psi(\xi) \in \Gamma_{\infty}(\mathcal{E}_X)$  and is holomorphic,
- (iii)  $\Psi(\xi) * f_A = \Psi(\xi \cdot A)$  for  $\xi \in X$  and  $A \in \mathcal{A}$ .

**Proof.** For every  $x \in X$ , we have

$$\|s_{\xi}\| = \sup_{\rho \in \mathcal{P}} |\rho(\langle \xi | \xi \rangle)|^{1/2} = \|\langle \xi | \xi \rangle\|^{1/2} = \|\xi\|.$$

Hence  $s_{\xi}$  is bounded on  $\mathcal{P}$  and the map  $\Psi$  well defined and isometric. This proves (i).

(ii) Let  $\rho \in \mathcal{P}$ , so that  $\rho \in \mathcal{P}_b$  for some  $b \in B$ . Choose as a representative for b an irreducible representation  $(\mathcal{H}, \pi)$ . Fix  $h \in S(\mathcal{H})$  and, using the notations in (A.1), take a local trivialization  $\psi_{\alpha,h}$  of the Hopf bundle at  $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$  with  $\rho \in \mathcal{V}_h$ . By formula (B.2) we obtain

$$\partial_Y \phi_h(\rho)(s_{\xi}(\rho)) = \mathcal{O}\left( \left[ \partial_Y \hat{\xi}_{\rho} + \xi_{\rho} \left( K^h_{Y,\rho} - \frac{\langle z | Y \rangle}{2(1 + \|z\|^2)} \right) \right]_{\rho}, h \right).$$
(5.1)

Owing to (B.3), the right-hand side of (5.1) is smooth with respect to  $z \equiv \beta_h(\rho) \in \mathcal{H}_h$ , and hence,  $s_{\xi}$  is smooth at  $\mathcal{P}_b$  for each  $b \in B$ . For  $\rho_0 \in \mathcal{P}_b$ , we can choose  $h_0 \in S(\mathcal{H}_b)$  such that

 $\rho_0 = \langle h_0 | \pi_b(\cdot) h_0 \rangle.$ 

Then  $\beta_{h_0}(\rho_0) = 0$ . According to the proof of Lemma B.1, we have

$$\langle e|\phi_{h_0}(\rho)(s_{\xi}(\rho))\rangle = \frac{\langle \Omega_{\rho'}^{n_0}|\pi_b(\langle \xi'|\xi\rangle)(z+h_0)\rangle}{\sqrt{1+\|z\|^2}}$$

for  $z = \beta_{h_0}(\rho), \rho \in \mathcal{V}_{h_0}$ . For an anti-holomorphic tangent vector  $\overline{Y}$  of  $\mathcal{P}_b$ , we have

$$\bar{\partial}_{\bar{Y}}\phi_h(\rho)(s_{\xi}(\rho)) = \mathcal{O}\left(\left[-\xi_{\rho}\frac{\langle Y|z\rangle}{2(1+\|z\|^2)}\right]_{\rho}, h\right),$$

from which follows:

 $\overline{\partial}_{\overline{Y}}\phi_h(\rho)(s_{\xi}(\rho))|_{z=0}=0.$ 

We see that the anti-holomorphic derivative of  $s_{\xi}$  vanishes at each point in  $\mathcal{P}_b$ . Hence  $s_{\xi}$  is holomorphic.

(iii) Let  $A \in \mathcal{A}$ . For  $b \in B$  and  $\rho_0 \in \mathcal{P}_b$ , take a chart  $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$  at  $\rho_0$ , where h is a unit vector in  $\mathcal{H}$  and  $(\mathcal{H}, \pi)$  is a representative of b. Then for  $z \in \mathcal{H}_h$ , we have

$$(f_A \circ \beta_h^{-1})(z) = \frac{\langle (z+h) | \pi(A)(z+h) \rangle}{1 + \|z\|^2}$$

Then the representation  $X_{f_A}^h$  of the Hamiltonian vector field  $X_{f_A}$  at  $(\mathcal{V}_h, \beta_h, \mathcal{H}_h)$  is

$$(X^h_{f_A})_z = -\sqrt{-1}(\pi(A)(z+h) - \langle h|\pi(A)(z+h)\rangle(z+h))$$

for  $z \in \mathcal{H}_h$ . If we take *h* such that  $\beta_h(\rho_0) = 0$ , then it holds that

$$(X_{f_A}^h)_0 = -\sqrt{-1}(\pi(A)h - \langle h|\pi(A)h\rangle h).$$

The connection D satisfies

$$\langle v | (D_{X_{f_A}} s)(\rho_0) \rangle_{\rho_0} = \partial_{\rho_0} (\langle v | s(\cdot) \rangle_{\rho_0})(X_{f_A})$$

for  $v \in E_h$ ,  $s \in \Gamma_{\infty}(\mathcal{E}_X)$ . Hence we have

$$(D_{X_{f_A}}s_{\xi})(\rho_0) = [\xi a_{X_{f_A},0}]_{\rho_0},$$

where  $a_{X_{f_A},0} \in \mathcal{A}$  satisfies

$$\pi(a_{X_{f_A},0})h = X_{f_A} = -\sqrt{-1}(\pi(A) - \langle h | \pi(A)h \rangle)h.$$

Therefore we have

$$\begin{split} \sqrt{-1}(D_{X_{f_A}}s_{\xi})(\rho_0) &= \sqrt{-1}[\xi \cdot (-\sqrt{-1}(A - \langle h | \pi(A)h \rangle))]_{\rho_0} \\ &= [\xi A]_{\rho_0} - [\xi]_{\rho_0} \langle h | \pi(A)h \rangle = s_{\xi A}(\rho_0) - s_{\xi}(\rho_0) f_A(\rho_0), \end{split}$$

from which follows:

$$(s_{\xi} * f_A)(\rho_0) = s_{\xi}(\rho_0) f_A(\rho_0) + \sqrt{-1}(D_{X_{f_A}} s_{\xi})(\rho_0) = s_{\xi A}(\rho_0).$$

Therefore we obtain  $\Psi(\xi) * f_A = \Psi(\xi A)$ .

**Proposition 5.4.** Any element in  $\Gamma_X$  is holomorphic.

**Proof.** For each  $\tau \in \Gamma_{\text{const}}(X \times \mathcal{P})$ , there is  $\xi \in X$  such that  $\tau(\rho) = (\xi, \rho)$  for  $\rho \in \mathcal{P}$ . Then

$$s \in \Gamma_X \Leftrightarrow s(\rho) = [\xi]_{\rho}$$
 for each  $\rho \in \mathcal{P} \Leftrightarrow s = \Psi(\xi) \Leftrightarrow s \in \Psi(X)$ .

Hence  $\Gamma_X = \Psi(X)$ . Therefore Proposition 5.4 follows from Lemma 5.3 (ii).

## Lemma 5.5.

- (i)  $\Gamma_X$  is a right  $\mathcal{K}_u(\mathcal{P})$ -module by the \*-action defined in Definition 4.4.
- (ii) For the hermitian metric H of  $\mathcal{E}_X$ , let  $\mathfrak{h}$  be the restriction of H to  $\Gamma_X$ . Then the function-valued sesquilinear form

$$\mathfrak{h}: \Gamma_X \times \Gamma_X \to C^{\infty}(\mathcal{P}),$$

satisfies

$$\begin{split} \mathfrak{h}(s,s') &\in \mathcal{K}_{u}(\mathcal{P}) \quad (s,s' \in \Gamma_{X}), \qquad \overline{\mathfrak{h}(s,s')} = \mathfrak{h}(s',s) \quad (s,s' \in \Gamma_{X}), \\ \mathfrak{h}(s,s) &\geq 0 \quad (s \in \Gamma_{X}), \qquad \mathfrak{h}(s,s'*f) = \mathfrak{h}(s,s')*f \quad (s,s' \in \Gamma_{X}, f \in \mathcal{K}_{u}(\mathcal{P})), \\ \|\mathfrak{h}(s,s)\|^{1/2} &= \|s\| \quad (s \in \Gamma_{X}), \end{split}$$
(5.2)

where the positivity in (5.2) means that  $\mathfrak{h}(s, s)$  is a positive-valued function on  $\mathcal{P}$  and the norm of  $\mathfrak{h}(s, s)$  is the one defined in (4.1).

(iii) The following equation holds:

 $\mathfrak{h}_{\rho}(\Psi(\xi),\Psi(\eta)) = \rho(\langle \xi | \eta \rangle) \quad (\xi,\eta \in X, \rho \in \mathcal{P}).$ 

**Proof.** By Proposition 5.4 we know that  $\Gamma_X = \Psi(X)$ . By  $\mathcal{K}_u(\mathcal{P}) = f(\mathcal{A})$  and Lemma 5.3 (iii), the map is a module action. Thus (i) is verified.

(ii) and (iii): Next, we have the following equations

 $\mathfrak{h}_{\rho}(\Psi(\xi),\Psi(\xi')) = H_{\rho}(s_{\xi},s_{\xi'}) = \langle s_{\xi}(\rho)|s_{\xi'}(\rho)\rangle_{\rho} = \rho(\langle\xi|\xi'\rangle),$ 

which proves (iii). Furthermore,  $\rho(\langle \xi | \xi' \rangle) = f_{\langle \xi | \xi' \rangle}(\rho)$ . Therefore  $\mathfrak{h}(\Psi(\xi), \Psi(\xi')) = f_{\langle \xi | \xi' \rangle} \in \mathcal{K}_u(\mathcal{P})$ . Hence  $\mathfrak{h}(s, s') \in \mathcal{K}_u(\mathcal{P})$  for each  $s, s' \in \Gamma_X$ . For  $\xi, \eta \in X, A \in \mathcal{A}$ ,

$$\mathfrak{h}_{\rho}(s_{\eta}, s_{\xi} * f_A) = \mathfrak{h}_{\rho}(s_{\eta}, s_{\xi A}) = \rho(\langle \eta | \xi A \rangle) = (f_{\langle \eta | \xi \rangle} * f_A)(\rho) = (\mathfrak{h}(s_{\eta}, s_{\xi}) * f_A)(\rho)$$
  
(by using(iii)).

Hence  $\mathfrak{h}(s, s' * l) = \mathfrak{h}(s, s') * l$  for  $s, s' \in \Gamma_X, l \in \mathcal{K}_u(\mathcal{P})$ . The other equations in statement (ii) follow from the property of the *C*\*-valued inner product of *X* and by the proof of Lemma 5.3 (i).

Finally we come to the reconstruction theorem for Hilbert  $C^*$ -modules by means of their atomic bundle.

#### Theorem 5.6.

- (i) Any element in  $\Gamma_X$  is holomorphic.
- (ii)  $\Gamma_X$  is a Hilbert  $C^*$ -module over the  $C^*$ -algebra  $\mathcal{K}_u(\mathcal{P})$ .
- (iii) There is a Banach space isomorphism  $\Psi : X \to \Gamma_X$

| X               | × | $\mathcal{A}$                | $\rightarrow$ | Χ           |   |
|-----------------|---|------------------------------|---------------|-------------|---|
| $\Psi \times f$ | ţ |                              |               | Ļ           | Ψ |
| $\Gamma_X$      | × | $\mathcal{K}_u(\mathcal{P})$ |               | $\Gamma_X,$ |   |

where the horizontal arrows are module actions. Hence, under the identification f:  $\mathcal{A} \cong \mathcal{K}_u(\mathcal{P}), \Gamma_X$  is isomorphic to X as a Hilbert  $\mathcal{A}$ -module.

Proof. (i) is Proposition 5.4. (ii) By Lemma 5.5 (i), (ii) and Definition 3.1

$$\mathfrak{h}: \Gamma_X \times \Gamma_X \to \mathcal{K}_u(\mathcal{P}), \tag{5.3}$$

is a positive definite  $C^*$ -inner product of a right  $\mathcal{K}_u(\mathcal{P})$ -module  $\Gamma_X$ . Hence  $\Gamma_X$  is a Hilbert  $C^*$ -module over a  $C^*$ -algebra  $\mathcal{K}_u(\mathcal{P})$ .

(iii) By Lemma 5.3 (i) and Proposition 5.4,  $\Psi$  is an isomorphism between X and  $\Gamma_X$ . If we rewrite the module actions  $\phi$  and  $\psi$  of X and  $\Gamma_X$ , respectively, by

$$\phi(\xi, A) = \xi A, \qquad \psi(s, l) = s * l$$

for  $\xi \in X$ ,  $A \in \mathcal{A}$ ,  $s \in \Gamma_X$  and  $l \in \mathcal{K}_u(\mathcal{P})$ , then we have

$$(\psi \circ (\Psi \times f))(\xi, A) = \Psi(\xi) * f_A = s_{\xi A} = (\Psi \circ \phi)(\xi, A),$$

by Lemma 5.3 (iii). Hence we obtain:

 $\psi \circ (\Psi \times f) = \Psi \circ \phi.$ 

Therefore the diagram in the statement (iii) is commutative.

## Acknowledgements

I would like to thank Prof. I. Ojima for a critical reading of this paper.

## Appendix A. The Hopf bundle over a Hilbert space

We recall some facts about the Hopf bundle over a Hilbert space  $\mathcal{H}$  and its associated bundle. Note we do *not* assume dim  $\mathcal{H} < \infty$ .

## A.1. Definition

We denote  $\mathcal{H}$  a Hilbert space over **C** with dim  $\mathcal{H} \geq 1$ . Define

$$S(\mathcal{H}) \equiv \{z \in \mathcal{H} : ||z|| = 1\}, \qquad \mathcal{P}(\mathcal{H}) \equiv (\mathcal{H} \setminus \{0\}) / \mathbb{C}^{\times}.$$

We call  $S(\mathcal{H})$  and  $\mathcal{P}(\mathcal{H})$  a Hilbert sphere and a projective Hilbert space over  $\mathcal{H}$ , respectively. We denote an element of  $\mathcal{P}(\mathcal{H})$  by [z] for  $z \in \mathcal{H} \setminus \{0\}$ . It is well known that  $S(\mathcal{H})$  is a submanifold of  $\mathcal{H}$ , in the relative topology. We give  $\mathcal{P}(\mathcal{H})$  the quotient topology from  $\mathcal{H} \setminus \{0\} \subset \mathcal{H}$  by the natural projection. Define a projection  $\mu$  from  $S(\mathcal{H})$  to  $\mathcal{P}(\mathcal{H})$  by

 $\mu: S(\mathcal{H}) \to \mathcal{P}(\mathcal{H}), \qquad \mu(z) \equiv [z] \quad (z \in S(\mathcal{H})).$ 

We call  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$  the Hopf (fiber) bundle over  $\mathcal{H}$ . Clearly,  $\mu^{-1}([z]) \cong S^1$  for each  $[z] \in \mathcal{P}(\mathcal{H})$ .

We define local trivial neighborhoods of the Hopf bundle [3]. Fix  $h \in S(\mathcal{H})$  and define

$$\mathcal{V}_{h} \equiv \{[z] \in \mathcal{P}(\mathcal{H}) : \langle h | z \rangle \neq 0\}, \qquad \mathcal{H}_{h} \equiv \{z \in \mathcal{H} : \langle h | z \rangle = 0\},$$
  
$$\beta_{h} : \mathcal{V}_{h} \to \mathcal{H}_{h}, \qquad \beta_{h}([z]) \equiv \frac{z}{\langle h | z \rangle} - h \qquad ([z] \in \mathcal{V}_{h}).$$

Then  $\{(\mathcal{V}_h, \beta_h, \mathcal{H}_h)\}_{h \in S(\mathcal{H})}$  is a holomorphic atlas for  $\mathcal{P}(\mathcal{H})$ . As well known,  $\mathcal{P}(\mathcal{H})$  is a Kähler manifold [3].

Let  $\psi_h$  be the local trivializing neighborhoods for  $S(\mathcal{H})$  at  $\mathcal{V}_h$  defined by

$$\begin{split} \psi_h &: \mu^{-1}(\mathcal{V}_h) \cong \mathcal{V}_h \times U(1), \qquad \psi_h(z) \equiv ([z], \phi_h(z)) \\ \phi_h(z) &\equiv \frac{\langle z | h \rangle}{|\langle h | z \rangle|} \quad (z \in \mu^{-1}(\mathcal{V}_h)), \\ \psi_h^{-1}([z], g) &\equiv z \frac{\langle h | z \rangle}{|\langle h | z \rangle|} g \qquad ([z] \in \mathcal{V}_h, g \in U(1)). \end{split}$$

Hence  $\{\mathcal{V}_h\}_{h\in S(\mathcal{H})}$  is a system of local trivial neighborhoods for  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ . Let *R* be the right action of U(1) on  $S(\mathcal{H})$  defined by

$$S(\mathcal{H}) \times U(1) \to S(\mathcal{H}); \qquad (z, c) \mapsto z \cdot c = R_c z \equiv \bar{c} z.$$

Then the following conditions are satisfied: (i)  $\mu(R_c z) = \mu(z)$ , (ii) *R* is free, that is, if  $R_c z = z$ , then c = 1, (iii) for each  $h \in S(\mathcal{H})$ :

$$\phi_h(R_c z) = \frac{\langle z | h \rangle}{|\langle h | z \rangle|} c \quad (z \in S(\mathcal{H}), c \in U(1)).$$

Hence  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$  is a principal U(1)-bundle.

**Lemma A.1.** Let  $h, h' \in S(\mathcal{H})$  with  $\mathcal{V}_{h'} \cap \mathcal{V}_h \neq \emptyset$ . For  $z, X \in \mathcal{H}_h$ , we have

$$(\beta_{h'} \circ \beta_h^{-1})(z) = \frac{h+z}{\langle h'|h+z \rangle} - h',$$
  
$$\partial_z (\beta_{h'} \circ \beta_h^{-1})(X) = \frac{1}{\langle h'|h+z \rangle} X - \frac{\langle h'|X \rangle}{\langle h'|h+z \rangle^2} (h+z).$$

**Definition A.2.** We denote by  $\Omega_h$  the local section

 $\Omega_h([z]) \equiv \phi_h(z)z \quad ([z] \in \mathcal{V}_h).$ 

By definition,  $\langle h | \Omega_h(\rho) \rangle > 0$  for  $\rho \in \mathcal{V}_h$ .

#### A.2. Transition functions

Let  $h, h' \in S(\mathcal{H})$  with  $h' \in \mathcal{V}_h$ , then the transition function  $Q_{h'h} : \mathcal{V}_h \cap \mathcal{V}_{h'} \to U(1)$  is

$$Q_{h'h}([z]) \equiv \frac{\langle z|h'\rangle}{|\langle h'|z\rangle|} \frac{\langle h|z\rangle}{|\langle h|z\rangle|}$$

## Fact A.3.

- (i)  $Q_{hh}([z]) = 1$  for  $[z] \in \mathcal{V}_h$ .
- (ii) If  $h, h' \in S(\mathcal{H})$  satisfy  $\langle h' | h \rangle \neq 0$ , then  $Q_{h'h} = Q_{hh'}^{-1}$ .
- (iii) If  $h, h', h'' \in S(\mathcal{H})$  are mutually non-orthogonal, then

$$Q_{h''h'}([z]) \cdot Q_{h'h}([z]) = Q_{h''h}([z]) \quad ([z] \in \mathcal{V}_h \cap \mathcal{V}_{h'} \cap \mathcal{V}_{h''}).$$

**Lemma A.4.** Let X be a tangent vector of  $\mathcal{P}(\mathcal{H})$  at  $\rho \in \mathcal{V}_h \cap \mathcal{V}_{h'}$  which is realized in  $\mathcal{H}_{h'}$ and  $\beta_{h'}(\rho) = z$ . Then

$$\partial_z (Q_{h'h}^{-1} \circ \beta_{h'}^{-1})(X) = -\frac{1}{2} \frac{\langle z+h'|h\rangle^2 \langle h|X\rangle}{|\langle h|z+h'\rangle|^3}.$$

**Proof.** The statement is proved by a simple computation.

**Lemma A.5.** *In the notation of* Lemma A.4 we have:

$$(Q_{h'h} \circ \beta_{h'}^{-1})(w) \cdot \partial_w (Q_{h'h}^{-1} \circ \beta_{h'}^{-1})(X) = -\frac{1}{2} \frac{\langle h | X \rangle}{\langle h | w + h' \rangle}.$$

**Proof.** By Lemma A.4 and the definition of Q, the statement follows easily.

A.3. Associated bundles of Hopf bundles

Let *F* be a  $C^{\infty}$ -manifold with a left U(1)-action  $\alpha$  and  $S(\mathcal{H}) \times F$  the direct product space of  $S(\mathcal{H})$  and *F*. Define a right U(1)-action  $\gamma$  on  $S(\mathcal{H})$  by

$$z\gamma_c \equiv \bar{c}z \quad (c \in U(1), z \in S(\mathcal{H})).$$

We define  $S(\mathcal{H}) \times_{U(1)} F$  as the set of all U(1)-orbits in  $S(\mathcal{H}) \times F$ , where the U(1)-action is defined by

$$(z, f)c \equiv (z\gamma_c, \alpha(\bar{c})f)$$
  $(c \in U(1), (z, f) \in S(\mathcal{H}) \times F).$ 

The topology of  $S(\mathcal{H}) \times_{U(1)} F$  is induced from  $S(\mathcal{H}) \times F$  by the natural projection  $\pi$ :  $S(\mathcal{H}) \times F \rightarrow S(\mathcal{H}) \times_{U(1)} F$ . We denote the element of  $S(\mathcal{H}) \times_{U(1)} F$  containing (x, f) by [(x, f)]. Define a projection

$$\pi_F: S(\mathcal{H}) \times_{U(1)} F \to \mathcal{P}(\mathcal{H}), \qquad \pi_F([(x, f)]) \equiv \mu(x).$$

The fibration  $\mathbf{F} \equiv (S(\mathcal{H}) \times_{U(1)} F, \pi_F, \mathcal{P}(\mathcal{H}))$  is called *the associated bundle of*  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$  by *F*. For  $h \in S(\mathcal{H})$ , define a map  $\psi_{\alpha,h} : \pi_F^{-1}(\mathcal{V}_h) \to \mathcal{V}_h \times F$  by

$$\psi_{\alpha,h}([(z, f)]) \equiv (\mu(z), \phi_{\alpha,h}([(z, f)])) = (\mu(z), \alpha(\phi_h(z))f).$$
(A.1)

We have

$$\psi_{\alpha,h}^{-1}([z], f) = \left[ \left( z, \alpha \left( \frac{\langle h | z \rangle}{|\langle h | z \rangle|} \right) f \right) \right] \quad (([z], f) \in \mathcal{V}_h \times F).$$

The definition of  $\psi_{\alpha,h}$  is independent of the choice of (z, f). Hence  $\psi_{\alpha,h}$  is a local trivialization of **F** at  $\mathcal{V}_h$ . The transition function on  $\mathcal{V}_h \cap \mathcal{V}_{h'} \times F$  is therefore

$$\hat{Q}_{\alpha,h',h} \equiv \psi_{\alpha,h'} \circ \psi_{\alpha,h}^{-1} : ([z], f) \mapsto ([z], \alpha(Q_{h'h}([z]))f).$$

If F is a complex vector space, then the natural U(1)-action  $\alpha$  is the scalar multiplication.

293

A.4. Recovery of the typical fiber

Let  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$  be a Hopf bundle and *F* a complex Hilbert space. We consider the associated bundle  $S(\mathcal{H}) \times_{U(1)} F$  which is done w.r.t. the natural action of U(1) on *F*.

**Proposition A.6.** *There is the following equivalence of fiber bundles on*  $\mathcal{P}(\mathcal{H})$ *:* 

 $(S(\mathcal{H}) \times_{U(1)} F) \times_{\mathcal{P}(\mathcal{H})} S(\mathcal{H}) \cong S(\mathcal{H}) \times F.$ 

**Proof.** Let  $X_1$  be the l.h.s. in the above statement. We note that any element of  $X_1$  is written as ([(h, v)], h), where  $[(h, v)] \in S(\mathcal{H}) \times_{U(1)} F$  because  $\pi_F([(h, v)]) = \mu(h)$  and we can choose the phase factor of (h, v) according to h. Let

 $\hat{\pi}_F: X_1 \to \mathcal{P}(\mathcal{H}), \qquad \hat{\pi}_F([(h, v)], h) \equiv h.$ 

Define

 $\Phi: X_1 \to S(\mathcal{H}) \times F, \qquad \Phi([(h, v)], h) \equiv (h, v).$ 

Then  $\Phi$  is well defined and bijective. Furthermore

 $(\mu_F \circ \Phi)([(h, v)], h) = \mu_F(h, v) = h = \hat{\pi}_F([(h, v)], h).$ 

Therefore  $\mu_F \circ \Phi = \hat{\pi}_F$  and  $(\Phi, id)$  is a bundle map between  $X_1$  and  $(S(\mathcal{H}) \times F, \mu_F, \mathcal{P}(\mathcal{H}))$ .

**Proposition A.7.** Let  $\alpha$  be a transitive action of a group G on  $S(\mathcal{H})$  and consider the action

 $\hat{\alpha} \equiv (\alpha \times_{U(1)} 1) \times_{\mathcal{P}(\mathcal{H})} \alpha,$ 

of G on  $X_1 \equiv (S(\mathcal{H}) \times_{U(1)} F) \times_{\mathcal{P}(\mathcal{H})} S(\mathcal{H})$ . Then the quotient  $Y_1$  of  $X_1$  w.r.t. the action  $\hat{\alpha}$  is canonically identified with the linear space F.

**Proof.** For  $[x] = [([(h, v)], h)] \in Y_1, [x] = \{([(\alpha_g h, v)], \alpha_g h) : g \in G\}$ . Hence we can take the quotient  $\Phi$  to the bijection

 $\tilde{\Phi}: Y_1 \to S(\mathcal{H}) \times F, \qquad \tilde{\Phi}([x]) \equiv [\Phi(x)].$ 

A.5. Connections on an associated bundle of a Hopf bundle

Let  $\mathbf{F} \equiv (S(\mathcal{H}) \times_{U(1)} F, \pi_F, \mathcal{P}(\mathcal{H}))$  be an associated vector bundle of a Hopf bundle  $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$  by a complex Hilbert space *F*. Let  $\Gamma(\mathbf{F})$  be the set of all smooth sections of **F**, that is the set of right inverses of the projection  $\pi_F$ . By the standard operations,  $\Gamma(\mathbf{F})$  is a complex linear space.

**Definition A.8.** *D* is connection on **F** if *D* is a bilinear map of complex vector spaces  $D : \mathfrak{X}(\mathcal{P}(\mathcal{H})) \times \Gamma(\mathbf{F}) \to \Gamma(\mathbf{F})$  which is  $C^{\infty}(\mathcal{P}(\mathcal{H}))$ -linear with respect to  $\mathfrak{X}(\mathcal{P}(\mathcal{H}))$  and satisfies the Leibniz law with respect to  $\Gamma(\mathbf{F})$ :

$$D_Y(s \cdot l) = \partial_Y l \cdot s + l \cdot D_Y s \quad (s \in \Gamma(\mathbf{F}), l \in C^{\infty}(\mathcal{P}(\mathcal{H})) Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H}))).$$

For  $Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H}))$ ,  $h \in S(\mathcal{H})$  and  $\rho \in \mathcal{V}_h$ , we denote by  $Y_{\rho}^h$  the corresponding tangent vector at  $\rho$  in a local chart. Assume that a connection D on  $\mathbf{F}$  can be written as  $\partial + A$ . Then  $D_Y = \partial_Y + A_Y$  is a linear map on  $\Gamma(\mathbf{F})$ . If  $D_Y|_{\rho}^h$  is the local expression of  $D_Y$  on the local trivial chart w.r.t.  $h \in S(\mathcal{H})$  and  $\rho \in \mathcal{V}_h$ , then we obtain families of linear maps

$$A_{Y,\rho}^h: F \to F,$$

such that  $\partial_Y|^h_\rho + A^h_{Y,\rho} = (\partial_Y + A_Y)^h_\rho = (\partial + A)^h_{Y,\rho}.$ 

**Fact A.9.** The family  $\{A_{Y,\rho}^h\}$  is the local expression of a connection  $D \equiv \partial + A$  on **F** if and only if the following equality is satisfied:

$$A_{Y,\rho}^{h'} = -\frac{1}{2} \frac{\langle h|Y\rangle}{\langle h|z+h'\rangle} + A_{Y,\rho}^{h} \quad (\rho \in \mathcal{V}_{h'} \cap \mathcal{V}_{h}), \tag{A.2}$$

where *Y* is a holomorphic tangent vector of  $\mathcal{P}(\mathcal{H})$  at  $\rho$  which is realized on  $\mathcal{H}_{h'}$  and  $z = \beta_{h'}(\rho)$ .

**Proof.** By Leibniz rule and Lemma A.5, we obtain the formula directly.  $\Box$ 

## Appendix B. Lemma for the main theorem

We prepare some equations for the main theorem. For  $\rho \in \mathcal{V}_h$ , define a vector in  $\Omega_{\rho}^h$  in  $\mathcal{H}_b$  by

$$\Omega_{\rho}^{h} \equiv \frac{\beta_{h}(\rho) + h}{\sqrt{1 + \|\beta_{h}(\rho)\|^{2}}}.$$

Assume that  $\rho = \omega_x \circ \pi_b$  for  $x \in \mathcal{H}_b$ , ||x|| = 1. Then  $[x] = [\Omega_{\rho}^h]$  and  $\langle h | \Omega_{\rho}^h \rangle > 0$ . Let *s* be a section in  $\Gamma(\mathcal{E}_X)$  such that for each  $\rho \in \mathcal{P}_b$ , there is  $\xi_{\rho} \in X$  which satisfies  $s(\rho) = [\xi_{\rho}]_{\rho} \in \mathcal{E}_{X,\rho}$ . Let  $z = \beta_h(\rho)$  for  $h \in S(\mathcal{H}_b)$  such that  $\rho \in \mathcal{V}_h$ .

**Lemma B.1.** Let  $\psi_{\alpha,h}$  be as in (A.1). Then the following equations hold:

$$\langle e|\psi_{\alpha,h}(s(\rho))\rangle = \frac{\langle \Omega^h_{\rho'}|\pi_b(\langle \xi'|\xi_\rho\rangle)(z+h)\rangle}{\sqrt{1+\|z\|^2}} (e = \mathcal{O}([\xi']_{\rho'},h) \in F_X^b), \tag{B.1}$$

$$\partial_Y \phi_h(\rho)(s(\rho)) = \mathcal{O}\left( \left[ \partial_Y \hat{\xi}_\rho + \xi_\rho \left( K^h_{Y,\rho} - \frac{\langle z|Y \rangle}{2(1+\|z\|^2)} \right) \right]_\rho, h \right), \tag{B.2}$$

where  $K_{Y,\rho}^h \in \mathcal{A}$  is defined by

$$\pi_b(K^h_{Y,\rho})(h+z) = Y,\tag{B.3}$$

and  $[\partial_Y \hat{\xi}_\rho]_\rho \in \mathcal{E}_{X,\rho}$  is defined by

$$\langle [\eta]_{\rho} | [\partial_Y \hat{\xi}_{\rho}]_{\rho} \rangle_{\rho} \equiv \rho(\partial_Y \langle \eta | \xi_{\rho} \rangle)$$
  
for  $[\eta]_{\rho} \in \mathcal{E}_{X,\rho}.$ 

**Proof.** Let  $\phi_{\alpha,h} : (\Pi_X^b)^{-1}(\mathcal{V}_h) \to F_X^b$  be the map defined by

$$\psi_{\alpha,h}(x) = (\mu_b(h), \phi_{\alpha,h}(x)).$$

For  $e = \mathcal{O}([\xi']_{\rho'}, h) \in F_X^b$  such that  $h \in \mu_b^{-1}(\rho)$ , we have

$$\langle e|\phi_{\alpha,h}(s(\rho))\rangle = \langle \mathcal{O}([\xi']_{\rho'},h')|\mathcal{O}([\xi]_{\rho},h)\rangle = \frac{\langle \Omega^h_{\rho'}|\pi_b(\langle\xi'|\xi_{\rho}\rangle)(z+h)\rangle}{\sqrt{1+\|z\|^2}}.$$

From this we get

$$\begin{aligned} \langle e | \partial_Y \phi_h(\rho)(s(\rho)) \rangle &= \frac{\langle \Omega^h_{\rho'} | \pi_b(\partial_Y \langle \xi' | \xi_\rho \rangle)(z+h) \rangle}{\sqrt{1+\|z\|^2}} + \frac{\langle \Omega^h_{\rho'} | \pi_b(\langle \xi' | \xi_\rho \rangle)Y \rangle}{\sqrt{1+\|z\|^2}} \\ &- \frac{\langle \Omega^h_{\rho'} | \pi_b(\langle \xi' | \xi_\rho \rangle)(z+h) \rangle \langle z|Y \rangle}{2(\sqrt{1+\|z\|^2})^3}. \end{aligned}$$

Hence we obtain

$$\partial_Y \phi_h(\rho)(s(\rho)) = \mathcal{O}\left( \left[ \partial_Y \hat{\xi}_\rho + \xi_\rho \left( K_Y^h - \frac{\langle z | Y \rangle}{2(1 + \|z\|^2)} \right) \right]_\rho, h \right). \qquad \Box$$
(B.4)

## References

- O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II, Springer, New York, 1979, 1981.
- [2] N. Bourbaki, Elements of Mathematics, General Topology: Part I, Addison-Wesley, Reading, MA, 1966.
- [3] R. Cirelli, A. Manià, L. Pizzocchero, A functional representation of noncommutative C\*-algebras, Rev. Math. Phys. 6 (5) (1994) 675–697.
- [4] A. Connes, Non commutative differential geometry, Publ. Math. IHES 62 (1986) 257-360.
- [5] A. Connes, Non Commutative Geometry, Academic Press, Orlando, 1993.
- [6] K.K. Jensen, K. Thomsen, Elements of KK-Theory, Birkhauser, Basel, 1991.
- [7] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vols. I–IV, Academic Press, New York, 1983.
- [8] M. Karoubi, K-Theory An Introduction, Springer, Berlin, 1978.
- [9] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. I, Interscience, New York, 1969.
- [10] G.K. Pedersen, C\*-algebras and their Automorphism Groups, Academic Press, New York, 1979.
- [11] J.C. Várilly, J.M. Gracia-Bondía, Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993) 223–301.