Available online at www.sciencedirect.com

JOURNAL OF
GEOMETRYAND
PHYSICS

Serre-Swan theorem for non-commutative C^{*}-algebras

Katsunori Kawamura
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Received 22 July 2002; received in revised form 10 February 2003

Abstract

For a Hilbert C^{*}-module X over a C^{*}-algebra \mathcal{A}, we introduce a vector bundle \mathcal{E}_{X} associated to X. We prove that \mathcal{E}_{X} has an hermitian metric and a flat connection. We introduce a vector space Γ_{X} of holomorphic sections of \mathcal{E}_{X} with the following properties: (i) Γ_{X} is a Hilbert \mathcal{A}-module, (ii) the action of \mathcal{A} on Γ_{X} is defined by means of the connection of \mathcal{A}, (iii) the C^{*}-inner product of Γ_{X} is induced by the hermitian metric of \mathcal{E}_{X}.

We prove that the Hilbert C^{*}-module Γ_{X} is isomorphic to X. This sectional representation is a generalization of the Serre-Swan theorem to non-commutative C^{*}-algebras. We show that \mathcal{E}_{X} is isomorphic to an associated bundle of an infinite dimensional Hopf bundle with the structure group $U(1)$. © 2003 Elsevier Science B.V. All rights reserved.

MSC: 46L87

Subj. Class: Quantum mechanics; Non-commutative geometry
Keywords: Non-commutative geometry; Serre-Swan theorem; Hilbert C^{*}-module

1. Introduction

The Serre-Swan theorem [8] is described as follows.
Theorem 1.1 (Serre-Swan). Let Ω be a connected compact Hausdorff space and $C(\Omega)$ the algebra of all complex valued continuous functions on Ω. Assume that X is a module over

[^0]$C(\Omega)$. Then X is finitely generated projective iff there is a complex vector bundle E on Ω such that X is isomorphic onto the module of all continuous sections of E.

By Theorem 1.1, finitely generated projective modules over $C(\Omega)$ and complex vector bundles on Ω are in one-to-one correspondence up to isomorphisms. In non-commutative geometry [5,11], some class of modules over a non-commutative C^{*}-algebra \mathcal{A} are treated as vector bundles on a "non-commutative space" \mathcal{A}, generalizing Serre-Swan theorem for commutative C^{*}-algebras.

On the other hand, for a unital general non-commutative C^{*}-algebra \mathcal{A}, there is a uniform Kähler bundle (\mathcal{P}, p, B) [3] unique up to equivalence class of \mathcal{A}, such that \mathcal{A} is * isomorphic onto a uniform Kähler function algebra on (\mathcal{P}, p, B), what is a natural generalization of Gel'fand representation. We carefully review the uniform Kähler bundle and the functional representation of non-commutative C^{*}-algebras in Section 2. Under the above consideration, we state the following theorem which is a version of the Serre-Swan theorem generalized to non-commutative C^{*}-algebras.

Theorem 1.2. Let X be a Hilbert C^{*}-module over a unital C^{*}-algebra $\mathcal{A},(\mathcal{P}, p, B)$ the uniform Kähler bundle of $\mathcal{A}, \mathcal{K}_{u}(\mathcal{P})$ the C^{*}-algebra of uniform Kähler functions on \mathcal{P} and $f: \mathcal{A} \cong \mathcal{K}_{u}(\mathcal{P})$ the Gel'fand representation of \mathcal{A} :
(i) There is a complex vector bundle \mathcal{E}_{X} on \mathcal{P} with a hermitian metric H and a flat connection D and a bundle map P_{X} from the trivial vector bundle $X \times \mathcal{P}$ on \mathcal{P} to \mathcal{E}_{X} with dense image, at each fiber.
(ii) Let $\Gamma_{X} \equiv\left(P_{X}\right)_{*}\left(\Gamma_{\text {const }}(X \times \mathcal{P})\right) \subset \Gamma_{\mathrm{hol}}\left(\mathcal{E}_{X}\right)$, where $\Gamma_{\text {const }}(X \times \mathcal{P})$ is the set of all constant sections of $X \times \mathcal{P}$ and $\Gamma_{\mathrm{hol}}\left(\mathcal{E}_{X}\right)$ is the set of all holomorphic sections of \mathcal{E}_{X}. Then Γ_{X} is a Hilbert $\mathcal{K}_{u}(\mathcal{P})$-module with the right $*$-action

$$
\begin{aligned}
& \Gamma_{X} \times \mathcal{K}_{u}(\mathcal{P}) \rightarrow \Gamma_{X}, \\
& (s, l) \mapsto s * l \equiv s \cdot l+\sqrt{-1} D_{X_{l}} s \quad\left((s, l) \in \Gamma_{X} \times \mathcal{K}_{u}(\mathcal{P})\right),
\end{aligned}
$$

and the C^{*}-inner product

$$
\left.H\right|_{\Gamma_{X} \times \Gamma_{X}}: \Gamma_{X} \times \Gamma_{X} \rightarrow \mathcal{K}_{u}(\mathcal{P})
$$

where X_{l} is the holomorphic part of the complex Hamiltonian vector field of $l \in$ $\mathcal{K}_{u}(\mathcal{P}) \subset C^{\infty}(\mathcal{P})$ with respect to the Kähler form of \mathcal{P}.
(iii) Under an identification $f: \mathcal{A} \cong \mathcal{K}_{u}(\mathcal{P}), \Gamma_{X}$ is isomorphic to X as a Hilbert \mathcal{A} module.

In Section 3.1, we introduce the atomic bundle \mathcal{E}_{X} of a Hilbert C^{*}-module X, which is a Hilbert bundle on \mathcal{P}. We discuss its geometrical structure in Section 3.3. In Section 4.1, we define a flat connection D on the atomic bundle. In Section 4.2, we prove that any connection on the atomic bundle defines a $*$-action of the algebra of smooth functions on \mathcal{P} on the vector space of holomorphic sections of \mathcal{E}_{X}. In Section 5, we give a proof of Theorem 1.2.

Here we summarize correspondences between geometry and algebra

Gel'fand representation

	space	algebra
CG	Ω	$C(\Omega)$ pointwise product
NCG	$\mathcal{P} \rightarrow B$	$\mathcal{K}_{u}(\mathcal{P})$ *-product

Serre-Swan theorem

	vector bundle	module
CG	$E \rightarrow \Omega$	$\Gamma(E)$ pointwise action
NCG	$\mathcal{E}_{X} \rightarrow \mathcal{P}$	Γ_{X} $*$-action

where we call respectively, $\mathrm{CG}=$ commutative geometry as a geometry associated with commutative C^{*}-algebras, and NCG $=$ non-commutative geometry as a geometry associated with non-commutative C^{*}-algebras by following [4].

2. Preparation

2.1. Uniform Kähler bundles

We start from the geometric characterization of the set of all pure states and the spectrum of a C^{*}-algebra [3]. Assume now that E and M are topological spaces.

Definition 2.1. (E, μ, M) is called a uniform Kähler bundle if it satisfies the following conditions:
(i) μ is an open, continuous surjection between E and M,
(ii) the topology of E is induced by a given uniformity,
(iii) each fiber $E_{m} \equiv \mu^{-1}(m)$ is a Kähler manifold.

The local triviality of uniform Kähler bundle is not assumed. M is, in general, neither compact nor Hausdorff.

We simply denote (E, μ, M) by E. For uniform spaces, see [2]. Any metric space is a uniform space. Examples and relations with concrete C^{*}-algebras are given in Example 2.6. Roughly speaking, the fibers of the uniform Kähler bundle taken into account the noncommutativity of the C^{*}-algebra.

Definition 2.2. Two uniform Kähler bundles $(E, \mu, M),\left(E^{\prime}, \mu^{\prime}, M^{\prime}\right)$ are isomorphic if there is a pair (β, ϕ) of a uniform homeomorphism $\beta: E \rightarrow E^{\prime}$ and a homeomorphism $\phi: M \rightarrow$ M^{\prime}, such that $\mu^{\prime} \circ \beta=\phi \circ \mu$ and any restriction $\left.\beta\right|_{\mu^{-1}(m)}: \mu^{-1}(m) \rightarrow\left(\mu^{\prime}\right)^{-1}(\phi(m))$ is a holomorphic Kähler isometry for any $m \in M$. We call (β, ϕ) a uniform Kähler isomorphism between (E, μ, M) and $\left(E^{\prime}, \mu^{\prime}, M^{\prime}\right)$.

For example, any Kähler manifold N is a uniform Kähler bundle with a one-point set as the base space. In the same way, the metric direct sum of Kähler manifolds $\left\{N_{i}\right\}_{i=1}^{n}$ is a uniform Kähler bundle with a n-point set as base space, endowed with the discrete topology.

Any compact Hausdorff space X is a uniform space. X is a uniform Kähler bundle with zero-dimensional fiber with itself as the base space [2].

We explain the non-trivial third example of uniform Kähler bundles as follows. Let \mathcal{A} a unital C^{*}-algebra. Denote \mathcal{P} the set of all pure states of \mathcal{A}, endowed with the w^{*}-uniformity, i.e. the uniformity which induces the w^{*}-topology. By the GNS representation of \mathcal{A}, there is a natural projection p from \mathcal{P} onto the spectrum B of \mathcal{A}, the set of all equivalence classes of irreducible representations of \mathcal{A}. The projection p is continuous when B is endowed with the Jacobson topology [10].

If \mathcal{A} is commutative, then $\mathcal{P} \cong B \cong$ "the set of all maximal ideals of \mathcal{A} " is a compact Hausdorff space. In [3] the following results are proved.

Theorem 2.3 (Reduced atomic realization). For any unital C^{*}-algebra $\mathcal{A},(\mathcal{P}, p, B)$ is a uniform Kähler bundle.

Let $\left(\mathcal{H}_{b}, \pi_{b}\right)$ be an irreducible representation belonging to $b \in B$. Then $\rho \in \mathcal{P}$ corresponds $\left[x_{\rho}\right] \in \mathcal{P}\left(\mathcal{H}_{b}\right) \equiv\left(\mathcal{H}_{b} \backslash\{0\}\right) / \mathbf{C}^{\times}$, where $\rho=\omega_{x_{\rho}} \circ \pi_{b}$ and $\omega_{x_{\rho}}$ denotes a vector state $\omega_{x_{\rho}}=\left\langle x_{\rho} \mid(\cdot) x_{\rho}\right\rangle$. Then \mathcal{P}_{b} has a Kähler manifold structure induced by the bijection

$$
\begin{equation*}
\tau^{b}: \mathcal{P}_{b} \rightarrow \mathcal{P}\left(\mathcal{H}_{b}\right), \quad \tau^{b}(\rho) \equiv\left[x_{\rho}\right] \tag{2.1}
\end{equation*}
$$

The Kähler distance d_{b} on a fiber $\mathcal{P}_{b} \equiv \mathcal{P}\left(\mathcal{H}_{b}\right)$ is given by

$$
d_{b}\left(\rho, \rho^{\prime}\right) \equiv \sqrt{2} \operatorname{arcos}\left|\left\langle x_{\rho} \mid x_{\rho^{\prime}}\right\rangle\right| \quad\left(\rho, \rho^{\prime} \in \mathcal{P}_{b}\right)
$$

which is the length of shortest geodesic arc between ρ and ρ^{\prime} in \mathcal{P}_{b}.
Theorem 2.4. Let \mathcal{A}_{i} be C^{*}-algebras with associated uniform Kähler bundles $\left(\mathcal{P}_{i}, p_{i}, B_{i}\right)$, $i=1,2$. Then \mathcal{A}_{1} and \mathcal{A}_{2} are ${ }^{*}$ isomorphic if and only if $\left(\mathcal{P}_{1}, p_{1}, B_{1}\right)$ and $\left(\mathcal{P}_{2}, p_{2}, B_{2}\right)$ are isomorphic as uniform Kähler bundles.

By this theorem, the uniform Kähler bundle (\mathcal{P}, p, B) associated with \mathcal{A} is uniquely determined up to uniform Kähler isomorphisms. From now on, we call it the uniform Kähler bundle associated with \mathcal{A}.

2.2. A functional representation of non-commutative C^{*}-algebras

We reconstruct \mathcal{A} from the uniform Kähler bundle (\mathcal{P}, p, B) associated with \mathcal{A}. Since $\mathcal{P}_{b} \equiv p^{-1}(b) \subset \mathcal{P}$ is a Kähler manifold for each $b \in B$, we can consider the fiberwise smooth ($=$ smooth in \mathcal{P}_{b} for each $b \in B$) functions on \mathcal{P}. Let

$$
C^{\infty}(\mathcal{P}) \text { : the set of all fiberwise smooth complex valued functions on } \mathcal{P}
$$

For $l \in C^{\infty}(\mathcal{P})$, we denote X_{l} the holomorphic Hamiltonian vector field of l, defined by the equation

$$
\begin{equation*}
\omega_{\rho}\left(\left(X_{l}\right)_{\rho}, \bar{Y}_{\rho}\right)=\bar{\partial}_{\rho} l\left(\bar{Y}_{\rho}\right) \quad\left(\bar{Y}_{\rho} \in \bar{T}_{\rho} \mathcal{P}\right) \quad \text { for } \rho \in \mathcal{P} \tag{2.2}
\end{equation*}
$$

where ω denotes the Kähler form on \mathcal{P} (defined on each fiber), $\bar{\partial}$ the anti-holomorphic differential operator on $C^{\infty}(\mathcal{P})$ and $\bar{T}_{\rho} \mathcal{P}$ denotes the anti-holomorphic tangent space of \mathcal{P} at $\rho \in \mathcal{P}$. A product $*$ on $C^{\infty}(\mathcal{P})$ is defined by

$$
\begin{equation*}
l * m \equiv l \cdot m+\sqrt{-1} X_{m} l \quad\left(l, m \in C^{\infty}(\mathcal{P})\right) \tag{2.3}
\end{equation*}
$$

If the involution * is defined on $C^{\infty}(\mathcal{P})$ by complex conjugation, then $\left(C^{\infty}(\mathcal{P}), *\right)$ becomes a^{*}-algebra with unit which is not associative in general. By using (2.2), the $*$-product can be written as follows:

$$
l * m=l \cdot m+\sqrt{-1} \omega\left(\bar{X}_{l}, X_{m}\right)
$$

Let us introduce the Kähler bracket $\{\cdot, \cdot\}$ with respect to ω, by

$$
\{l, m\} \equiv \omega\left(\bar{X}_{l}, X_{m}\right)+\omega\left(X_{l}, \bar{X}_{m}\right) \quad\left(l, m \in C^{\infty}(\mathcal{P})\right)
$$

Then the following equality holds:

$$
\begin{equation*}
l * m-m * l=\sqrt{-1}\{l, m\} \quad\left(l, m \in C^{\infty}(\mathcal{P})\right) \tag{2.4}
\end{equation*}
$$

Theorem 2.5 (Gel'fand representation of non-commutative C^{*}-algebras). For a noncommutative C^{*}-algebra \mathcal{A}, the Gel'fand representation

$$
f_{A}(\rho) \equiv \rho(A) \quad(A \in \mathcal{A}, \rho \in \mathcal{P})
$$

gives an injective * homomorphism of unital *-algebras:

$$
f: \mathcal{A} \rightarrow C^{\infty}(\mathcal{P}), \quad A \mapsto f_{A}
$$

where $C^{\infty}(\mathcal{P})$ is endowed with the above defined $*$-product. For a function l in the image $f(\mathcal{A})$ of the map f, set

$$
\begin{equation*}
\|l\| \equiv \sup _{\rho \in \mathcal{P}}|(\bar{l} * l)(\rho)|^{1 / 2} \tag{2.5}
\end{equation*}
$$

This defines a C^{*}-norm on the associative *-subalgebra $f(\mathcal{A})$. By this norm, $(f(\mathcal{A}), *)$ is isomorphic to \mathcal{A}.

Furthermore $f(\mathcal{A})$ is precisely the subset $\mathcal{K}_{u}(\mathcal{P}) \subset C^{\infty}(\mathcal{P})$ defined by

$$
\mathcal{K}_{u}(\mathcal{P}) \equiv\left\{l \in C^{\infty}(\mathcal{P}): \begin{array}{c}
D^{2} l=0, \bar{D}^{2} l=0 \tag{2.6}\\
\bar{l} * l, l * \bar{l}, \text { lare uniformly continuous on } \mathcal{P}
\end{array}\right\}
$$

where D and \bar{D} are the holomorphic and anti-holomorphic part, respectively, of covariant derivative of Kähler metric defined on each fiber of \mathcal{P}. Hence, the following equivalence of C^{*}-algebras holds:

$$
\mathcal{A} \cong \mathcal{K}_{u}(\mathcal{P})
$$

We call $\left(\mathcal{K}_{u}(\mathcal{P}), *\right)$ the C^{*}-algebra of uniform Kähler functions on \mathcal{P}.

By the above results, we obtain a fundamental correspondence between algebra and geometry as follows:

```
unital commutative C}\mp@subsup{C}{}{*}\mathrm{ -algebra }\Leftrightarrow\mathrm{ compact Hausdorff space
```



```
unital generally non-commutative C}\mp@subsup{C}{}{*}\mathrm{ -algebra }\Leftrightarrow\mathrm{ uniform Kähler bundle associated with a C*
```

The upper correspondence above is just the Gel'fand representation of unital commutative C^{*}-algebras.

Example 2.6. Assume that \mathcal{H} is a separable infinite dimensional Hilbert space.
(i) When $\mathcal{A} \equiv \mathcal{L}(\mathcal{H})$ is the algebra of all bounded linear operators on \mathcal{H}, the uniform Kähler bundle of \mathcal{A} is $\left(\mathcal{P}(\mathcal{H}) \cup \mathcal{P}_{-}, p, 2^{[0,1]} \cup\left\{b_{0}\right\}\right)$, where $\mathcal{P}(\mathcal{H})$ is the projective Hilbert space of $\mathcal{H}, \mathcal{P}_{-}$is the union of a family of projective Hilbert spaces indexed by the power set of the closed interval $[0,1]$ and $\left\{b_{0}\right\}$ is the one-point set corresponding to the equivalence class of identity representation $\left(\mathcal{H}, \operatorname{id}_{\mathcal{L}(\mathcal{H})}\right)$ of $\mathcal{L}(\mathcal{H})$ on \mathcal{H}. Since the primitive spectrum of $\mathcal{L}(\mathcal{H})$ is a two-point set, the topology of $2^{[0,1]} \cup\left\{b_{0}\right\}$ is equal to $\left\{\emptyset, 2^{[0,1]},\left\{b_{0}\right\}, 2^{[0,1]} \cup\left\{b_{0}\right\}\right\}$ [7]. In this way, the base space of the uniform Kähler bundle is not always a singleton when the C^{*}-algebra is type I.
(ii) For the C^{*}-algebra \mathcal{A} generated by the Weyl form of the one-dimensional canonical commutation relation $U(s) V(t)=\mathrm{e}^{\sqrt{-1} s t} V(t) U(s)$ for $s, t \in \mathbf{R}$, its uniform Kähler bundle is $(\mathcal{P}(\mathcal{H}), p,\{1 p t\})$. The spectrum is a one-point set $\{1 p t\}$ since von Neumann uniqueness theorem [1].
(iii) The CAR-algebra \mathcal{A} is a UHF algebra with the nest $\left\{M_{2^{n}}(\mathbf{C})\right\}_{n \in \mathbf{N}}$. The uniform Kähler bundle has the base space $2^{\mathbf{N}}$ and each fiber on $2^{\mathbf{N}}$ is a separable infinite dimensional projective Hilbert space where $2^{\mathbf{N}}$ is the power set of the set \mathbf{N} of all natural numbers with trivial topology, that is, the topology of $2^{\mathbf{N}}$ is just $\left\{\emptyset, 2^{\mathbf{N}}\right\}$. In general, the Jacobson topology of the spectrum of a simple C^{*}-algebra is trivial [7].

3. The atomic bundle of a Hilbert C^{*}-module

The aim of this section is the construction of a natural vector bundle for a given Hilbert C^{*}-module over a C^{*}-algebra.

3.1. The construction of the atomic bundle

Before starting to construct the atomic bundle of a Hilbert C^{*}-module, we state the definition of a Hilbert C^{*}-module.

Definition 3.1 ([6]). X is a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A} if X is a right \mathcal{A}-module and there is an \mathcal{A} valued sesquilinear form

$$
\langle\cdot \mid \cdot\rangle: X \times X \rightarrow \mathcal{A}
$$

which satisfies the following conditions:

$$
\begin{aligned}
& \langle\eta \mid \xi a\rangle=\langle\eta \mid \xi\rangle a \quad(\eta, \xi \in X, a \in \mathcal{A}), \quad(\langle\eta \mid \xi\rangle)^{*}=\langle\xi \mid \eta\rangle \quad(\eta, \xi \in X), \\
& \langle\xi \mid \xi\rangle \geq 0 \quad(\xi \in X), \quad\langle\xi \mid \xi\rangle=0 \Rightarrow \xi=0 \quad(\xi \in X)
\end{aligned}
$$

and X is complete with respect to the \mathcal{A}-valued norm defined by

$$
\begin{equation*}
\|\xi\| \equiv\|\langle\xi \mid \xi\rangle\|^{1 / 2} \quad(\xi \in X) \tag{3.1}
\end{equation*}
$$

Let X be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A} and (\mathcal{P}, p, B) the uniform Kähler bundle associated with \mathcal{A}. Defining a closed subspace N_{ρ} of X with $\rho \in \mathcal{P}$ by

$$
\begin{equation*}
N_{\rho} \equiv\left\{\xi \in X: \rho\left(\|\xi\|^{2}\right)=0\right\} \tag{3.2}
\end{equation*}
$$

we consider the quotient vector space

$$
\begin{equation*}
\mathcal{E}_{X, \rho}^{o} \equiv X / N_{\rho} \tag{3.3}
\end{equation*}
$$

equipped with the sesquilinear form $\langle\cdot \mid \cdot\rangle_{\rho}$ on $\mathcal{E}_{X, \rho}^{o}$ defined by

$$
\langle\cdot \mid \cdot\rangle_{\rho}: \mathcal{E}_{X, \rho}^{o} \times \mathcal{E}_{X, \rho}^{o} \rightarrow \mathbf{C}, \quad\left\langle[\xi]_{\rho} \mid[\eta]_{\rho}\right\rangle_{\rho} \equiv \rho(\langle\xi \mid \eta\rangle) \quad\left([\xi]_{\rho},[\eta]_{\rho} \in \mathcal{E}_{X, \rho}^{o}\right)
$$

where

$$
\begin{equation*}
[\xi]_{\rho} \equiv \xi+N_{\rho} \in \mathcal{E}_{X, \rho}^{o} \quad(\xi \in X) \tag{3.4}
\end{equation*}
$$

Then $\langle\cdot \mid \cdot\rangle_{\rho}$ becomes an inner product on $\mathcal{E}_{X, \rho}^{o}$. Let $\mathcal{E}_{X, \rho}$ be the completion of $\mathcal{E}_{X, \rho}^{o}$ by the norm $\|\cdot\|_{\rho} \equiv\left(\langle\cdot \mid \cdot\rangle_{\rho}\right)^{1 / 2}$. We obtain a Hilbert space $\left(\mathcal{E}_{X, \rho},\langle\cdot \mid \cdot\rangle_{\rho}\right)$ from a Hilbert C^{*}-module X for each pure state $\rho \in \mathcal{P}$. We note that $\mathcal{E}_{X_{\rho}}$ and $\mathcal{E}_{X_{\rho^{\prime}}}$ are equivalent Hilbert spaces when $\rho, \rho^{\prime} \in \mathcal{P}_{b}$.

Definition 3.2. The atomic bundle $\mathcal{E}_{X}=\left(\mathcal{E}_{X}, \Pi_{X}, \mathcal{P}\right)$ of a Hilbert C^{*}-module X over a C^{*}-algebra \mathcal{A} is defined as the fiber bundle \mathcal{E}_{X} on \mathcal{P} :

$$
\mathcal{E}_{X} \equiv \bigcup_{\rho \in \mathcal{P}} \mathcal{E}_{X, \rho}
$$

where the projection map $\Pi_{X}: \mathcal{E}_{X} \rightarrow \mathcal{P}$ is defined by $\Pi_{X}(x)=\rho$ for $x \in \mathcal{E}_{X, \rho}$.
The atomic bundle is the collection of its B-fibers, where for $b \in B$, the B-fiber \mathcal{E}_{X}^{b} of X is the bundle $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$, defined by

$$
\mathcal{E}_{X}^{b} \equiv \bigcup_{\rho \in \mathcal{P}_{b}} \mathcal{E}_{X, \rho}, \quad \quad \Pi_{X}^{b}: \mathcal{E}_{X}^{b} \rightarrow \mathcal{P}_{b},\left.\quad \Pi_{X}^{b} \equiv \Pi_{X}\right|_{\mathcal{E}_{X}^{b}}
$$

3.2. Unitary group action on the atomic bundle

Let G be the group of all unitary elements in \mathcal{A}. Define an action χ of G on \mathcal{P} by

$$
\chi_{u}(\rho) \equiv \rho \circ \operatorname{Ad} u^{*} \quad(u \in G, \rho \in \mathcal{P})
$$

Then χ_{u} maps \mathcal{P}_{b} to \mathcal{P}_{b} for each $b \in B$ and $u \in G$.

Lemma 3.3. G acts transitively on \mathcal{P}_{b} by Kähler automorphisms.
Proof. By irreducibility of the GNS representation of pure states, the statement follows immediately.

Next, define an action t^{b} of G on $\mathcal{E}_{X}^{o}=\bigcup_{\rho \in \mathcal{P}} \mathcal{E}_{X, \rho}^{o}$ by

$$
t_{u}^{b}\left([\xi]_{\rho}\right) \equiv\left[\xi u^{*}\right]_{\chi_{u}(\rho)} \quad\left(u \in G,[\xi]_{\rho} \in \mathcal{E}_{X, \rho}^{o}\right)
$$

t^{b} is well defined since the map $\xi \mapsto \xi u^{*}$ maps N_{ρ} to $N_{\chi_{u}(\rho)}$. As t_{u}^{b} is a unitary map from $\mathcal{E}_{X, \rho}^{o}$ to $\mathcal{E}_{X, \chi_{u}(\rho)}^{o}$, we can extend t_{u}^{b} as a unitary map from $\mathcal{E}_{X, \rho}$ to $\mathcal{E}_{X, \chi_{u}(\rho)}^{u}$. We note that

$$
\begin{equation*}
t_{c u}^{b}(x)=\bar{c} t_{u}^{b}(x) \quad(u \in G, c \in U(1)) \tag{3.5}
\end{equation*}
$$

We define an action t of G on \mathcal{E}_{X} by $\left.t\right|_{\mathcal{E}_{X}^{b}} \equiv t^{b}, b \in B$. Then $T \equiv(t, \chi)$ is an action of G on $\left(\mathcal{E}_{X}, \Pi_{X}, \mathcal{P}\right)$ by bundle automorphisms. This action preserves B-fibers $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$, $b \in B$, too.

Consider now the Hopf bundle ($S\left(\mathcal{H}_{b}\right), \mu_{b}, \mathcal{P}_{b}$) (see Appendix A). For the fibrations $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$ and $\left(S\left(\mathcal{H}_{b}\right), \mu_{b}, \mathcal{P}_{b}\right)$, define their fiber product $\mathcal{E}_{X}^{b, U(1)} \subset \mathcal{E}_{X}^{b} \times S\left(\mathcal{H}_{b}\right)$ by

$$
\mathcal{E}_{X}^{b, U(1)} \equiv \mathcal{E}_{X}^{b} \times_{\mathcal{P}_{b}} S\left(\mathcal{H}_{b}\right)=\left\{(x, h) \in \mathcal{E}_{X}^{b} \times S\left(\mathcal{H}_{b}\right): \Pi_{X}^{b}(x)=\mu_{b}(h)\right\}
$$

Thus an action σ^{b} of G on $\mathcal{E}_{X}^{b, U(1)}$ is defined by

$$
\sigma_{u}^{b}(x, h) \equiv\left(t_{u}(x), \pi_{b}(u) h\right) \quad\left((x, h) \in \mathcal{E}_{X}^{b, U(1)}, u \in G\right)
$$

We note that a representation $\left(\mathcal{H}_{b}, \pi_{b}\right)$ of \mathcal{A} induces an action of G on $S\left(\mathcal{H}_{b}\right)$.
Lemma 3.4. For $(x, h) \in \mathcal{E}_{X}^{b, U(1)}$ and $u \in G$, if $\sigma_{u}^{b}(x, h)=(y, h)$, then $x=y$.
Proof. We have just to consider the case $x \in \mathcal{E}_{X, \rho}^{o}$. Let $x=[\xi]_{\rho}$. By assumption, $(y, h)=$ ($\left.\left[\xi u^{*}\right]_{\chi_{u}(\rho)}, \pi_{b}(u) h\right)$. Hence $h=\pi_{b}(u) h$ or, equivalently

$$
\begin{equation*}
\pi_{b}\left(u^{*}\right) h=h . \tag{3.6}
\end{equation*}
$$

By definition of fiber product, we have $\chi_{u}(\rho)=\rho$ and $y=\left[\xi u^{*}\right]_{\rho}$. By using the above results, we obtain:

$$
\|x-y\|_{\rho}^{2}=\rho\left(\left\|\xi-\xi u^{*}\right\|^{2}\right)=\rho\left(\|\xi\|^{2}\right)+\rho\left(u\|\xi\|^{2} u^{*}\right)-\rho\left(\langle\xi \mid \xi\rangle u^{*}\right)-\rho(u\langle\xi \mid \xi\rangle)
$$

with $\rho=\left\langle h \mid \pi_{b}(\cdot) h\right\rangle$. Therefore (3.6) implies

$$
\|x-y\|_{\rho}^{2}=2 \rho\left(\|\xi\|^{2}\right)-\rho(\langle\xi \mid \xi\rangle)-\rho(\langle\xi \mid \xi\rangle)=0
$$

Hence we obtain $x=y$.
Definition 3.5. F_{X}^{b} is the set of all orbits of G in $\mathcal{E}_{X}^{b, U(1)}$.

Let $\mathcal{O}(x, h) \in F_{X}^{b}$ be the orbit containing $(x, h) \in \mathcal{E}_{X}^{b, U(1)}$.

$$
\mathcal{O}(x, h)=\left\{\sigma_{u}^{b}(x, h): u \in G\right\}=\left\{\left(t_{u}(x), \pi_{b}(u) h\right): u \in G\right\}
$$

By Lemma 3.4, any element of $\mathcal{O}(x, h)$ is written as ($y_{h^{\prime}}, h^{\prime}$), where $y_{h^{\prime}}$ is an element of \mathcal{E}_{X}^{b} determined by $h^{\prime} \in S\left(\mathcal{H}_{b}\right)$ uniquely. Hence F_{X}^{b} is a family of spheres in $\mathcal{E}_{X}^{b, U(1)}$, each homeomorphic to $S\left(\mathcal{H}_{b}\right)$.

Lemma 3.6. For $\left(y, h^{\prime}\right)$ in $\mathcal{O}(x, h)$, if $y=x \neq 0$, then $h=h^{\prime}$.
Proof. By the choice of $\left(x, h^{\prime}\right)$, there is $u \in G$ such that $\sigma_{u}^{b}(x, h)=\left(x, h^{\prime}\right) . t_{u}^{b}(x)=x$ and $\pi_{b}(u) h=h^{\prime}$. Since $\mu_{b}\left(h^{\prime}\right)=\Pi_{X}^{b}(x)=\mu_{b}(h)$, there is $c \in U(1)$ such that $h^{\prime}=c h$. Hence we can choose $u=c I$. Then we have

$$
x=t_{u}^{b}(x)=t_{c I}^{b}(x)=\bar{c} t_{I}^{b}(x)=\bar{c} x,
$$

by (3.5). Therefore $c=1$ and we obtain $h=h^{\prime}$ when $x \neq 0$.
Corollary 3.7. For $c \in U(1), \mathcal{O}(x, c h)=\mathcal{O}(c x, h)$.
Furthermore $\mathcal{O}(0, h)=\left\{\left(0, h^{\prime}\right): h^{\prime} \in S\left(\mathcal{H}_{b}\right)\right\}$. Let $\left(y, h^{\prime}\right) \in \mathcal{O}(x, h) \cap\left(\mathcal{E}_{X, \mu_{b}(h)} \times\right.$ $S\left(\mathcal{H}_{b}\right)$). Then there is $u \in G$ such that $\left(y, h^{\prime}\right)=\sigma_{u}(x, h)$. By the choice of $\left(y, h^{\prime}\right), h^{\prime} \in$ $\mu_{b}^{-1}\left(\mu_{b}(h)\right)$. Hence there is $c \in U(1)$ such that $h^{\prime}=c h$.

Proposition 3.8. F_{X}^{b} is naturally identified with the Hilbert space $\mathcal{E}_{X, \rho}$, for each $\rho \in \mathcal{P}_{b}$.

3.3. Structure of the atomic bundle

We shall prove that the atomic bundle has a Hilbert bundle structure. Let $\left(S\left(\mathcal{H}_{b}\right) \times_{U(1)}\right.$ $\left.F_{X}^{b}, \pi_{F_{X}^{b}}, \mathcal{P}\left(\mathcal{H}_{b}\right)\right)$ be the associated bundle of $\left(S\left(\mathcal{H}_{b}\right), \mu_{b}, \mathcal{P}\left(\mathcal{H}_{b}\right)\right)$ by F_{X}^{b} where the Hilbert space structure on F_{X}^{b} is defined according to Proposition 3.8.

Lemma 3.9. Any element of $S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}$ can be written as $[(h, \mathcal{O}(x, h))]$ where $\mathcal{O}(x, h) \in F_{X}^{b}$.

Proof. By definition of the associated bundle (Appendix A.3), an element of $S\left(\mathcal{H}_{b}\right) \times{ }_{U(1)} F_{X}^{b}$ is the $U(1)$-orbit $[(h, \mathcal{O}(x, k))]$. Take an element $[(h, \mathcal{O}(y, k))] \in S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}$. By definition of $\mathcal{O}(y, k)$ and the transitivity of the action of G on $S(\mathcal{H})$, there is $u \in G$ such that $h=u k$ and $\left(t_{u}^{b}(y), h\right) \in \mathcal{O}(y, k)$. Denote $x \equiv t_{u}(y)$. Then $\mathcal{O}(x, h)=\mathcal{O}(y, k)$. Hence $[(h, \mathcal{O}(y, k))]=[(h, \mathcal{O}(x, h))]$.

From now on, we shall denote

$$
[h, x] \equiv[(h, \mathcal{O}(x, h))] \in S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}
$$

for $h \in S(\mathcal{H})$ and $x \in \mathcal{E}_{X}^{b}$.

Recall for each $b \in B, \mathcal{P}_{b}$ is a Kähler manifold which is isomorphic to a projective Hilbert space $\mathcal{P}\left(\mathcal{H}_{b}\right)$ by the map τ^{b}.

Theorem 3.10. For each $b \in B$, the B-fiber $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$ at b is a locally trivial Hilbert bundle isomorphic to $\left(S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}, \pi_{F_{X}^{b}}, \mathcal{P}\left(\mathcal{H}_{b}\right)\right)$.

Proof. Define a map $\Psi^{b}: \mathcal{E}_{X}^{b} \rightarrow S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}$ by $\Psi^{b}(x) \equiv\left[h_{x}, x\right] \quad\left(x \in \mathcal{E}_{X}^{b}\right)$, where $h_{x} \in \mu_{b}^{-1}\left(\Pi_{X}^{b}(x)\right)$. If $\Psi^{b}(x)=\Psi^{b}(y)$ for $x, y \in \mathcal{E}_{X}^{b}$, then $[h, x]=\left[h^{\prime}, y\right]$. Therefore there is $c \in U(1)$ such that $(h, \mathcal{O}(x, h)) c=\left(h^{\prime}, \mathcal{O}\left(y, h^{\prime}\right)\right)$. By $h^{\prime}=\bar{c} h$ and Corollary 3.7, $\mathcal{O}(y, \bar{c} h)=\mathcal{O}(x, \bar{c} h)$. By Lemma 3.4, we get $x=y$, so that Ψ^{b} is injective. By definition of F_{X}^{b}, Ψ^{b} is surjective, hence Ψ^{b} is a bijection. We obtain a set-theoretical isomor$\operatorname{phism}\left(\Psi^{b}, \tau^{b}\right)$ of fibrations between $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$ and $\left(S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}, \pi_{F_{X}^{b}}, \mathcal{P}_{b}\right)$ such that any restriction $\left.\Psi^{b}\right|_{\mathcal{E}_{X, \rho}}$ of Ψ^{b} at a fiber $\mathcal{E}_{X, \rho}$ is a unitary between $\mathcal{E}_{X, \rho}$ and $\pi_{F_{X}^{b}}^{-1}(\rho)$ for $\rho \in \mathcal{P}_{b}$.

This isomorphism induces on $\left(\mathcal{E}_{X}^{b}, \Pi_{X}^{b}, \mathcal{P}_{b}\right)$ the Hilbert bundle structure of the associated bundle $\left(S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}, \pi_{F_{X}^{b}}, \mathcal{P}_{b}\right)$.

By Theorem 3.10 and Definition 3.2, we have constructed in a canonic way a locally trivial Hilbert bundle from a Hilbert C^{*}-module and we understand that the atomic bundle of a Hilbert C^{*}-module is a family of associated bundles of Hopf bundles indexed by spectrum B :

$$
\mathcal{E}_{X} \cong \bigcup_{b \in B}\left(S\left(\mathcal{H}_{b}\right) \times_{U(1)} F_{X}^{b}\right)
$$

We conclude this section by introducing a bundle map to be used in Section 5. Let ($X \times$ $\mathcal{P}, t, \mathcal{P})$ be the trivial complex vector bundle on \mathcal{P}. Then we introduce the map

$$
\begin{equation*}
P_{X}: X \times \mathcal{P} \rightarrow \mathcal{E}_{X} ; \quad P_{X}(\xi, \rho) \equiv[\xi]_{\rho} \quad((\xi, \rho) \in X \times \mathcal{P}) \tag{3.7}
\end{equation*}
$$

The image $P_{X}\left(X \times \mathcal{P}_{b}\right)$ is dense in \mathcal{E}_{X}^{b}, for every $b \in B$. Moreover $P_{X}\left(\xi^{\prime}, \rho\right)=P_{X}(\xi, \rho)$ if and only if $\xi^{\prime}-\xi \in N_{\rho}$, for $\rho \in \mathcal{P}$. Then (P_{X}, id) is a bundle map from $(X \times \mathcal{P}, t, \mathcal{P}$) to $\left(\mathcal{E}_{X}, \Pi_{X}, \mathcal{P}\right)$.

4. Connection and $*$-action

In this section, we define a flat connection D on the atomic bundle and prove a relation between the associativity of $*$-action defined by D and the flatness of D.

4.1. The atomic connection of the atomic bundle

To define the $*$-action of $\left(C^{\infty}(\mathcal{P}), *\right)$ on the smooth sections of the atomic bundle of a Hilbert C^{*}-module X, we define a connection D of \mathcal{E}_{X}, called the atomic connection.

Let $\mathcal{E}_{X}=\left(\mathcal{E}_{X}, \Pi_{X}, \mathcal{P}\right)$ be the atomic bundle of a Hilbert C^{*}-module X over a C^{*}-algebra \mathcal{A}. Let $\Gamma\left(\mathcal{E}_{X}\right)$ be the set of all bounded sections of \mathcal{E}_{X}, that is, $\Gamma\left(\mathcal{E}_{X}\right) \ni s: \mathcal{P} \rightarrow \mathcal{E}_{X}$ is a right inverse of Π_{X} and satisfies

$$
\begin{equation*}
\|s\| \equiv \sup _{\rho \in \mathcal{P}}\|s(\rho)\|_{\rho}<\infty \tag{4.1}
\end{equation*}
$$

By standard operations, $\Gamma\left(\mathcal{E}_{X}\right)$ is a complex linear space, isometric to the Banach direct
 each B-fiber $\left.s\right|_{\mathcal{P}_{b}}: \mathcal{P}_{b} \rightarrow \mathcal{E}_{X}^{b}$ for each $b \in B$ in the sense of Fréchet differentiability of Hilbert manifolds. Define $\Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ the set of all B-fiberwise smooth sections in $\Gamma\left(\mathcal{E}_{X}\right)$.

A hermitian metric H is defined on \mathcal{E}_{X} by

$$
\begin{equation*}
H_{\rho}\left(s, s^{\prime}\right) \equiv\left\langle s(\rho) \mid s^{\prime}(\rho)\right\rangle_{\rho} \tag{4.2}
\end{equation*}
$$

for $\rho \in \mathcal{P}, s, s^{\prime} \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ [9]. Let $\mathfrak{X}(\mathcal{P})$ be the set of all B-fiberwise smooth vector fields of \mathcal{P}.

Definition 4.1. A connection on \mathcal{E}_{X} is a \mathbf{C}-bilinear map D which is $C^{\infty}(\mathcal{P})$-linear with respect to $\mathfrak{X}(\mathcal{P})$ and satisfies the Leibniz law with respect to $\Gamma_{\infty}\left(\mathcal{E}_{X}\right)$:

$$
D_{Y}(s \cdot l)=\partial_{Y} l \cdot s+l \cdot D_{Y} s
$$

for $s \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right), l \in C^{\infty}(\mathcal{P})$ and $Y \in \mathfrak{X}(\mathcal{P})$.
For $h \in S\left(\mathcal{H}_{b}\right)$ we consider a trivializing neighborhood \mathcal{V}_{h} for the Hopf bundle (see Appendix A.1). For a fixed $\rho \in \mathcal{V}_{h}$ and $Y \in \mathfrak{X}\left(\mathcal{P}_{b}\right)$, we denote by Y_{ρ}^{h} the corresponding tangent vector at ρ in local coordinates and by the linear operator of multiplication by number

$$
-\frac{1}{2} \frac{\left\langle\beta_{h}(\rho) \mid Y_{\rho}^{h}\right\rangle}{1+\left\|\beta_{h}(\rho)\right\|^{2}}
$$

Proposition 4.2. $D_{Y, \rho}^{h} \equiv \partial_{Y_{\rho}^{h}}+A_{Y, \rho}^{h}$ gives the local expression of a flat connection D^{b} on \mathcal{E}_{X}^{b}.

Proof. We prove the cocycle condition for the family of linear maps $A \equiv\left\{A^{h}\right\}_{h \in S\left(\mathcal{H}_{b}\right)}$, where $A^{h}: \mathcal{H}_{b} \rightarrow \mathcal{L}\left(F_{X}^{b}\right)$ is defined by $A^{h}\left(Y_{\rho}^{h}\right)=A_{Y, \rho}^{h}$. For $\rho \in \mathcal{P}_{b}$, choose $h, h^{\prime} \in$ $S\left(\mathcal{H}_{b}\right)$ such that $\rho \in \mathcal{V}_{h} \cap \mathcal{V}_{h^{\prime}}$. The cocycle condition for A is given by formula (A.2) in Appendix A. 5.

Let $z^{\prime} \equiv \beta_{h^{\prime}}(\rho), z \equiv \beta_{h}(\rho)$. By a simple computation, we get

$$
-2 \cdot A_{X, \rho}^{h}=\frac{\left\langle z \mid X_{\rho}^{h}\right\rangle}{1+\|z\|^{2}}=-2 \cdot A_{X, \rho}^{h^{\prime}}-\frac{\left\langle h \mid X_{\rho}^{h^{\prime}}\right\rangle}{\left\langle h \mid z^{\prime}+h^{\prime}\right\rangle},
$$

and formula (A.2) holds. Therefore $D_{Y, \rho}^{h}$ gives the local expression of a connection D^{b}. The curvature R^{b} of D^{b} can be expressed as:

$$
R_{X, Y}^{b}=(d A)(X, Y)+(A \wedge A)(X, Y) \quad\left(X, Y \in \mathfrak{X}\left(\mathcal{P}_{b}\right)\right)
$$

Since A is scalar, $A \wedge A=0$. In a chart $\left(\mathcal{V}_{h}, \beta_{h}, \mathcal{H}_{h}\right)$ of $\rho \in \mathcal{P}_{b}$ and $z=\beta_{h}(\rho) \in \mathcal{H}_{h}$, we have

$$
\left(d_{z} A\right)(X, Y)=X A_{Y, Z}^{h}-Y A_{X, z}^{h}-A_{[X, Y], z}^{h}
$$

By simple computation we obtain $\left(d_{z} A\right)(X, Y)=0$, so that $R^{b}=0$ and D^{b} is flat.
Definition 4.3. We call the connection in Proposition 4.2 the atomic connection of the atomic bundle.

4.2. The $*$-action of a function algebra on sections of the atomic bundle

By (2.3), the function space $C^{\infty}(\mathcal{P})$ is a $*$-algebra with $*$-product which is generally not associative. We define the $*$-action of $\left(C^{\infty}(\mathcal{P}), *\right)$ on the smooth sections of the atomic bundle of a Hilbert C^{*}-module by using the atomic connection D of \mathcal{E}_{X}. We characterize algebraic properties, commutativity, associativity, of $*$-action by D and the curvature of \mathcal{E}_{X} with respect to D. Now we denote by D any connection on \mathcal{E}_{X}.

Definition 4.4. We define the (right) $*$-action of $C^{\infty}(\mathcal{P})$ on $\Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ by

$$
s * l \equiv s \cdot l+\sqrt{-1} D_{X_{l}} s
$$

for $l \in C^{\infty}(\mathcal{P})$ and $s \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)$, where X_{l} is the holomorphic Hamiltonian vector field of l with respect to the Kähler form of \mathcal{P}.

We give a geometric characterization of the above $*$-action.
Lemma 4.5. For each $s \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ and $l, m \in C^{\infty}(\mathcal{P})$, the following equations hold:

$$
\begin{aligned}
& (s * l) * m-(s * m) * l=\left(\sqrt{-1}\{l, m\}+\left[D_{X_{l}}, D_{X_{m}}\right]\right) s, \\
& s *(l * m)-s *(m * l)=\left(\sqrt{-1}\{l, m\}+D_{\left[X_{l}, X_{m}\right]}\right) s .
\end{aligned}
$$

Proof. The first equation follows immediately by

$$
\begin{aligned}
& (s * l) * m-(s * m) * l \\
& \quad=\sqrt{-1} D_{X_{m}}(s \cdot l)+\sqrt{-1}\left(\left(D_{X_{l}} s\right) \cdot m+\sqrt{-1} D_{X_{m}} D_{X_{l}} s\right)-\sqrt{-1} D_{X_{l}}(s \cdot m) \\
& \quad-\sqrt{-1}\left(\left(D_{X_{m}} s\right) \cdot l+\sqrt{-1} D_{X_{l}} D_{X_{m}} s\right)
\end{aligned}
$$

since

$$
X_{m} l-X_{l} m=\{l, m\} .
$$

The proof of the second equation is analogous.

Remark 4.6.

(i) By Lemma 4.5 , the non-commutativity of $*$-action of $C^{\infty}(\mathcal{P})$ on $\Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ depends on the connection D of \mathcal{E}_{X} and the Kähler form of \mathcal{P}.
(ii) We denote three different notions, $*$-action, $*$-product and involution by the same symbol " $*$ " according to custom style.

Let the associator $a(l, m)$ of $l, m \in C^{\infty}(\mathcal{P})$ be an operator

$$
\begin{aligned}
& a(l, m): \Gamma_{\infty}\left(\mathcal{E}_{X}\right) \rightarrow \Gamma_{\infty}\left(\mathcal{E}_{X}\right) \\
& a(l, m) s \equiv(s * l) * m-s *(l * m) \quad\left(s \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)\right)
\end{aligned}
$$

Then we have a relation between associativity and curvature.
Proposition 4.7. On $\Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ and for $l, m \in C^{\infty}(\mathcal{P})$, the following equation holds:

$$
a(l, m)-a(m, l)=R_{X_{l}, X_{m}},
$$

where R is the curvature of \mathcal{E}_{X} with respect to D defined by

$$
R_{Y, Z} \equiv\left[D_{Y}, D_{Z}\right]-D_{[Y, Z]} \quad(Y, Z \in \mathfrak{X}(\mathcal{P}))
$$

5. A sectional representation of Hilbert C^{*}-modules

Let us summarize our notations. Let X be a Hilbert C^{*}-module over a unital C^{*}-algebra $\mathcal{A}, \mathcal{K}_{u}(\mathcal{P})$ the image of the Gel'fand representation of \mathcal{A} and $\mathcal{E}_{X}=\left(\mathcal{E}_{X}, \Pi_{X}, \mathcal{P}\right)$ the atomic bundle of X. For the map P_{X} defined in (3.7), define a linear map

$$
\begin{aligned}
& \left(P_{X}\right)_{*}: \Gamma(X \times \mathcal{P}) \rightarrow \Gamma\left(\mathcal{E}_{X}\right), \quad\left(\left(P_{X}\right)_{*}(s)\right)(\rho) \equiv P_{X}(s(\rho), \rho) \\
& (s \in \Gamma(X \times \mathcal{P}), \rho \in \mathcal{P})
\end{aligned}
$$

We define a subspace Γ_{X} of $\Gamma\left(\mathcal{E}_{X}\right)$ as follows.

Definition 5.1.

$$
\Gamma_{X} \equiv\left(P_{X}\right)_{*}\left(\Gamma_{\mathrm{const}}(X \times \mathcal{P})\right),
$$

where $\Gamma_{\text {const }}(X \times \mathcal{P})$ is the subspace of $\Gamma(X \times \mathcal{P})$ consisting of all constant sections.
Remark 5.2. Γ_{X} is quite smaller that the set of all holomorphic sections of \mathcal{E}_{X}. Actually, we shall see in Theorem 5.6 that the hermitian form, restricted to Γ_{X} has values in $\mathcal{K}_{u}(\mathcal{P})$.

We prepare some lemmata for the proof of the reconstruction theorem and explain how the structure of Hilbert C^{*}-module is interpreted as the geometrical structure of the atomic bundle.

For $\xi \in X$, we define a section $s_{\xi} \in \Gamma\left(\mathcal{E}_{X}\right)$ of \mathcal{E}_{X} by

$$
s_{\xi}(\rho) \equiv[\xi]_{\rho} \quad(\rho \in \mathcal{P})
$$

Define the map

$$
\Psi: X \rightarrow \Gamma\left(\mathcal{E}_{X}\right), \quad \Psi(\xi) \equiv s_{\xi} \quad(\xi \in X)
$$

Lemma 5.3. The map Ψ is well defined and has the following properties:
(i) Ψ is a linear isometry,
(ii) for each $\xi \in X, \Psi(\xi) \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)$ and is holomorphic,
(iii) $\Psi(\xi) * f_{A}=\Psi(\xi \cdot A)$ for $\xi \in X$ and $A \in \mathcal{A}$.

Proof. For every $x \in X$, we have

$$
\left\|s_{\xi}\right\|=\sup _{\rho \in \mathcal{P}}|\rho(\langle\xi \mid \xi\rangle)|^{1 / 2}=\|\langle\xi \mid \xi\rangle\|^{1 / 2}=\|\xi\| .
$$

Hence s_{ξ} is bounded on \mathcal{P} and the map Ψ well defined and isometric. This proves (i).
(ii) Let $\rho \in \mathcal{P}$, so that $\rho \in \mathcal{P}_{b}$ for some $b \in B$. Choose as a representative for b an irreducible representation (\mathcal{H}, π). Fix $h \in S(\mathcal{H})$ and, using the notations in (A.1), take a local trivialization $\psi_{\alpha, h}$ of the Hopf bundle at $\left(\mathcal{V}_{h}, \beta_{h}, \mathcal{H}_{h}\right)$ with $\rho \in \mathcal{V}_{h}$. By formula (B.2) we obtain

$$
\begin{equation*}
\partial_{Y} \phi_{h}(\rho)\left(s_{\xi}(\rho)\right)=\mathcal{O}\left(\left[\partial_{Y} \hat{\xi}_{\rho}+\xi_{\rho}\left(K_{Y, \rho}^{h}-\frac{\langle z \mid Y\rangle}{2\left(1+\|z\|^{2}\right)}\right)\right]_{\rho}, h\right) \tag{5.1}
\end{equation*}
$$

Owing to (B.3), the right-hand side of (5.1) is smooth with respect to $z \equiv \beta_{h}(\rho) \in \mathcal{H}_{h}$, and hence, s_{ξ} is smooth at \mathcal{P}_{b} for each $b \in B$. For $\rho_{0} \in \mathcal{P}_{b}$, we can choose $h_{0} \in S\left(\mathcal{H}_{b}\right)$ such that

$$
\rho_{0}=\left\langle h_{0} \mid \pi_{b}(\cdot) h_{0}\right\rangle
$$

Then $\beta_{h_{0}}\left(\rho_{0}\right)=0$. According to the proof of Lemma B.1, we have

$$
\left\langle e \mid \phi_{h_{0}}(\rho)\left(s_{\xi}(\rho)\right)\right\rangle=\frac{\left\langle\Omega_{\rho^{\prime}}^{h_{0}} \mid \pi_{b}\left(\left\langle\xi^{\prime} \mid \xi\right\rangle\right)\left(z+h_{0}\right)\right\rangle}{\sqrt{1+\|z\|^{2}}}
$$

for $z=\beta_{h_{0}}(\rho), \rho \in \mathcal{V}_{h_{0}}$. For an anti-holomorphic tangent vector \bar{Y} of \mathcal{P}_{b}, we have

$$
\bar{\partial}_{\bar{Y}} \phi_{h}(\rho)\left(s_{\xi}(\rho)\right)=\mathcal{O}\left(\left[-\xi_{\rho} \frac{\langle Y \mid z\rangle}{2\left(1+\|z\|^{2}\right)}\right]_{\rho}, h\right)
$$

from which follows:

$$
\left.\bar{\partial}_{\bar{Y}} \phi_{h}(\rho)\left(s_{\xi}(\rho)\right)\right|_{z=0}=0
$$

We see that the anti-holomorphic derivative of s_{ξ} vanishes at each point in \mathcal{P}_{b}. Hence s_{ξ} is holomorphic.
(iii) Let $A \in \mathcal{A}$. For $b \in B$ and $\rho_{0} \in \mathcal{P}_{b}$, take a chart $\left(\mathcal{V}_{h}, \beta_{h}, \mathcal{H}_{h}\right)$ at ρ_{0}, where h is a unit vector in \mathcal{H} and (\mathcal{H}, π) is a representative of b. Then for $z \in \mathcal{H}_{h}$, we have

$$
\left(f_{A} \circ \beta_{h}^{-1}\right)(z)=\frac{\langle(z+h) \mid \pi(A)(z+h)\rangle}{1+\|z\|^{2}}
$$

Then the representation $X_{f_{A}}^{h}$ of the Hamiltonian vector field $X_{f_{A}}$ at $\left(\mathcal{V}_{h}, \beta_{h}, \mathcal{H}_{h}\right)$ is

$$
\left(X_{f_{A}}^{h}\right)_{z}=-\sqrt{-1}(\pi(A)(z+h)-\langle h \mid \pi(A)(z+h)\rangle(z+h))
$$

for $z \in \mathcal{H}_{h}$. If we take h such that $\beta_{h}\left(\rho_{0}\right)=0$, then it holds that

$$
\left(X_{f_{A}}^{h}\right)_{0}=-\sqrt{-1}(\pi(A) h-\langle h \mid \pi(A) h\rangle h)
$$

The connection D satisfies

$$
\left\langle v \mid\left(D_{X_{f_{A}}} s\right)\left(\rho_{0}\right)\right\rangle_{\rho_{0}}=\partial_{\rho_{0}}\left(\langle v \mid s(\cdot)\rangle_{\rho_{0}}\right)\left(X_{f_{A}}\right)
$$

for $v \in E_{h}, s \in \Gamma_{\infty}\left(\mathcal{E}_{X}\right)$. Hence we have

$$
\left(D_{X_{f_{A}}} s \xi\right)\left(\rho_{0}\right)=\left[\xi a_{X_{f_{A}}, 0}\right]_{\rho_{0}}
$$

where $a_{X_{f_{A}}, 0} \in \mathcal{A}$ satisfies

$$
\pi\left(a_{X_{f_{A}}, 0}\right) h=X_{f_{A}}=-\sqrt{-1}(\pi(A)-\langle h \mid \pi(A) h\rangle) h
$$

Therefore we have

$$
\begin{aligned}
\sqrt{-1}\left(D_{X_{f_{A}}} s_{\xi}\right)\left(\rho_{0}\right) & =\sqrt{-1}[\xi \cdot(-\sqrt{-1}(A-\langle h \mid \pi(A) h\rangle))]_{\rho_{0}} \\
& =[\xi A]_{\rho_{0}}-[\xi]_{\rho_{0}}\langle h \mid \pi(A) h\rangle=s_{\xi A}\left(\rho_{0}\right)-s_{\xi}\left(\rho_{0}\right) f_{A}\left(\rho_{0}\right)
\end{aligned}
$$

from which follows:

$$
\left(s_{\xi} * f_{A}\right)\left(\rho_{0}\right)=s_{\xi}\left(\rho_{0}\right) f_{A}\left(\rho_{0}\right)+\sqrt{-1}\left(D_{X_{f_{A}}} s_{\xi}\right)\left(\rho_{0}\right)=s_{\xi A}\left(\rho_{0}\right)
$$

Therefore we obtain $\Psi(\xi) * f_{A}=\Psi(\xi A)$.
Proposition 5.4. Any element in Γ_{X} is holomorphic.
Proof. For each $\tau \in \Gamma_{\text {const }}(X \times \mathcal{P})$, there is $\xi \in X$ such that $\tau(\rho)=(\xi, \rho)$ for $\rho \in \mathcal{P}$. Then $s \in \Gamma_{X} \Leftrightarrow s(\rho)=[\xi]_{\rho} \quad$ for each $\rho \in \mathcal{P} \Leftrightarrow s=\Psi(\xi) \Leftrightarrow s \in \Psi(X)$.

Hence $\Gamma_{X}=\Psi(X)$. Therefore Proposition 5.4 follows from Lemma 5.3 (ii).

Lemma 5.5.

(i) Γ_{X} is a right $\mathcal{K}_{u}(\mathcal{P})$-module by the $*$-action defined in Definition 4.4.
(ii) For the hermitian metric H of \mathcal{E}_{X}, let \mathfrak{h} be the restriction of H to Γ_{X}. Then the function-valued sesquilinear form

$$
\mathfrak{h}: \Gamma_{X} \times \Gamma_{X} \rightarrow C^{\infty}(\mathcal{P})
$$

satisfies

$$
\begin{align*}
& \mathfrak{h}\left(s, s^{\prime}\right) \in \mathcal{K}_{u}(\mathcal{P}) \quad\left(s, s^{\prime} \in \Gamma_{X}\right), \quad \overline{\mathfrak{h}\left(s, s^{\prime}\right)}=\mathfrak{h}\left(s^{\prime}, s\right) \quad\left(s, s^{\prime} \in \Gamma_{X}\right), \\
& \mathfrak{h}(s, s) \geq 0 \quad\left(s \in \Gamma_{X}\right), \quad \mathfrak{h}\left(s, s^{\prime} * f\right)=\mathfrak{h}\left(s, s^{\prime}\right) * f \quad\left(s, s^{\prime} \in \Gamma_{X}, f \in \mathcal{K}_{u}(\mathcal{P})\right), \\
& \|\mathfrak{h}(s, s)\|^{1 / 2}=\|s\| \quad\left(s \in \Gamma_{X}\right), \tag{5.2}
\end{align*}
$$

where the positivity in (5.2) means that $\mathfrak{h}(s, s)$ is a positive-valued function on \mathcal{P} and the norm of $\mathfrak{h}(s, s)$ is the one defined in (4.1).
(iii) The following equation holds:

$$
\mathfrak{h}_{\rho}(\Psi(\xi), \Psi(\eta))=\rho(\langle\xi \mid \eta\rangle) \quad(\xi, \eta \in X, \rho \in \mathcal{P})
$$

Proof. By Proposition 5.4 we know that $\Gamma_{X}=\Psi(X)$. By $\mathcal{K}_{u}(\mathcal{P})=f(\mathcal{A})$ and Lemma 5.3 (iii), the map is a module action. Thus (i) is verified.
(ii) and (iii): Next, we have the following equations

$$
\mathfrak{h}_{\rho}\left(\Psi(\xi), \Psi\left(\xi^{\prime}\right)\right)=H_{\rho}\left(s_{\xi}, s_{\xi^{\prime}}\right)=\left\langle s_{\xi}(\rho) \mid s_{\xi^{\prime}}(\rho)\right\rangle_{\rho}=\rho\left(\left\langle\xi \mid \xi^{\prime}\right\rangle\right)
$$

which proves (iii). Furthermore, $\rho\left(\left\langle\xi \mid \xi^{\prime}\right\rangle\right)=f_{\left\langle\xi \mid \xi^{\prime}\right\rangle}(\rho)$. Therefore $\mathfrak{h}\left(\Psi(\xi), \Psi\left(\xi^{\prime}\right)\right)=f_{\left\langle\xi \mid \xi^{\prime}\right\rangle} \in$ $\mathcal{K}_{u}(\mathcal{P})$. Hence $\mathfrak{h}\left(s, s^{\prime}\right) \in \mathcal{K}_{u}(\mathcal{P})$ for each $s, s^{\prime} \in \Gamma_{X}$. For $\xi, \eta \in X, A \in \mathcal{A}$,

$$
\begin{aligned}
& \mathfrak{h}_{\rho}\left(s_{\eta}, s_{\xi} * f_{A}\right)=\mathfrak{h}_{\rho}\left(s_{\eta}, s_{\xi A}\right)=\rho(\langle\eta \mid \xi A\rangle)=\left(f_{\langle\eta \mid \xi\rangle} * f_{A}\right)(\rho)=\left(\mathfrak{h}\left(s_{\eta}, s_{\xi}\right) * f_{A}\right)(\rho) \\
& \quad(\text { by using }(\mathrm{iii})) .
\end{aligned}
$$

Hence $\mathfrak{h}\left(s, s^{\prime} * l\right)=\mathfrak{h}\left(s, s^{\prime}\right) * l$ for $s, s^{\prime} \in \Gamma_{X}, l \in \mathcal{K}_{u}(\mathcal{P})$. The other equations in statement (ii) follow from the property of the C^{*}-valued inner product of X and by the proof of Lemma 5.3 (i).

Finally we come to the reconstruction theorem for Hilbert C^{*}-modules by means of their atomic bundle.

Theorem 5.6.

(i) Any element in Γ_{X} is holomorphic.
(ii) Γ_{X} is a Hilbert C^{*}-module over the C^{*}-algebra $\mathcal{K}_{u}(\mathcal{P})$.
(iii) There is a Banach space isomorphism $\Psi: X \rightarrow \Gamma_{X}$

where the horizontal arrows are module actions. Hence, under the identification f : $\mathcal{A} \cong \mathcal{K}_{u}(\mathcal{P}), \Gamma_{X}$ is isomorphic to X as a Hilbert \mathcal{A}-module.

Proof. (i) is Proposition 5.4. (ii) By Lemma 5.5 (i), (ii) and Definition 3.1

$$
\begin{equation*}
\mathfrak{h}: \Gamma_{X} \times \Gamma_{X} \rightarrow \mathcal{K}_{u}(\mathcal{P}) \tag{5.3}
\end{equation*}
$$

is a positive definite C^{*}-inner product of a right $\mathcal{K}_{u}(\mathcal{P})$-module Γ_{X}. Hence Γ_{X} is a Hilbert C^{*}-module over a C^{*}-algebra $\mathcal{K}_{u}(\mathcal{P})$.
(iii) By Lemma 5.3 (i) and Proposition 5.4, Ψ is an isomorphism between X and Γ_{X}. If we rewrite the module actions ϕ and ψ of X and Γ_{X}, respectively, by

$$
\phi(\xi, A)=\xi A, \quad \psi(s, l)=s * l
$$

for $\xi \in X, A \in \mathcal{A}, s \in \Gamma_{X}$ and $l \in \mathcal{K}_{u}(\mathcal{P})$, then we have

$$
(\psi \circ(\Psi \times f))(\xi, A)=\Psi(\xi) * f_{A}=s_{\xi A}=(\Psi \circ \phi)(\xi, A)
$$

by Lemma 5.3 (iii). Hence we obtain:

$$
\psi \circ(\Psi \times f)=\Psi \circ \phi
$$

Therefore the diagram in the statement (iii) is commutative.

Acknowledgements

I would like to thank Prof. I. Ojima for a critical reading of this paper.

Appendix A. The Hopf bundle over a Hilbert space

We recall some facts about the Hopf bundle over a Hilbert space \mathcal{H} and its associated bundle. Note we do not assume $\operatorname{dim} \mathcal{H}<\infty$.

A.1. Definition

We denote \mathcal{H} a Hilbert space over \mathbf{C} with $\operatorname{dim} \mathcal{H} \geq 1$. Define

$$
S(\mathcal{H}) \equiv\{z \in \mathcal{H}:\|z\|=1\}, \quad \mathcal{P}(\mathcal{H}) \equiv(\mathcal{H} \backslash\{0\}) / \mathbf{C}^{\times} .
$$

We call $S(\mathcal{H})$ and $\mathcal{P}(\mathcal{H})$ a Hilbert sphere and a projective Hilbert space over \mathcal{H}, respectively. We denote an element of $\mathcal{P}(\mathcal{H})$ by $[z]$ for $z \in \mathcal{H} \backslash\{0\}$. It is well known that $S(\mathcal{H})$ is a submanifold of \mathcal{H}, in the relative topology. We give $\mathcal{P}(\mathcal{H})$ the quotient topology from $\mathcal{H} \backslash\{0\} \subset \mathcal{H}$ by the natural projection. Define a projection μ from $S(\mathcal{H})$ to $\mathcal{P}(\mathcal{H})$ by

$$
\mu: S(\mathcal{H}) \rightarrow \mathcal{P}(\mathcal{H}), \quad \mu(z) \equiv[z] \quad(z \in S(\mathcal{H}))
$$

We call $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ the Hopf (fiber) bundle over \mathcal{H}. Clearly, $\mu^{-1}([z]) \cong S^{1}$ for each $[z] \in \mathcal{P}(\mathcal{H})$.

We define local trivial neighborhoods of the Hopf bundle [3]. Fix $h \in S(\mathcal{H})$ and define

$$
\begin{aligned}
& \mathcal{V}_{h} \equiv\{[z] \in \mathcal{P}(\mathcal{H}):\langle h \mid z\rangle \neq 0\}, \quad \mathcal{H}_{h} \equiv\{z \in \mathcal{H}:\langle h \mid z\rangle=0\}, \\
& \beta_{h}: \mathcal{V}_{h} \rightarrow \mathcal{H}_{h}, \quad \beta_{h}([z]) \equiv \frac{z}{\langle h \mid z\rangle}-h \quad\left([z] \in \mathcal{V}_{h}\right)
\end{aligned}
$$

Then $\left\{\left(\mathcal{V}_{h}, \beta_{h}, \mathcal{H}_{h}\right)\right\}_{h \in S(\mathcal{H})}$ is a holomorphic atlas for $\mathcal{P}(\mathcal{H})$. As well known, $\mathcal{P}(\mathcal{H})$ is a Kähler manifold [3].

Let ψ_{h} be the local trivializing neighborhoods for $S(\mathcal{H})$ at \mathcal{V}_{h} defined by

$$
\begin{aligned}
& \psi_{h}: \mu^{-1}\left(\mathcal{V}_{h}\right) \cong \mathcal{V}_{h} \times U(1), \quad \psi_{h}(z) \equiv\left([z], \phi_{h}(z)\right), \\
& \phi_{h}(z) \equiv \frac{\langle z \mid h\rangle}{|\langle h \mid z\rangle|} \quad\left(z \in \mu^{-1}\left(\mathcal{V}_{h}\right)\right), \\
& \psi_{h}^{-1}([z], g) \equiv z \frac{\langle h \mid z\rangle}{|\langle h \mid z\rangle|} g \quad\left([z] \in \mathcal{V}_{h}, g \in U(1)\right)
\end{aligned}
$$

Hence $\left\{\mathcal{V}_{h}\right\}_{h \in S(\mathcal{H})}$ is a system of local trivial neighborhoods for $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H})$). Let R be the right action of $U(1)$ on $S(\mathcal{H})$ defined by

$$
S(\mathcal{H}) \times U(1) \rightarrow S(\mathcal{H}) ; \quad(z, c) \mapsto z \cdot c=R_{c} z \equiv \bar{c} z
$$

Then the following conditions are satisfied: (i) $\mu\left(R_{c} z\right)=\mu(z)$, (ii) R is free, that is, if $R_{c} z=z$, then $c=1$, (iii) for each $h \in S(\mathcal{H})$:

$$
\phi_{h}\left(R_{c} z\right)=\frac{\langle z \mid h\rangle}{|\langle h \mid z\rangle|} c \quad(z \in S(\mathcal{H}), c \in U(1)) .
$$

Hence $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ is a principal $U(1)$-bundle.
Lemma A.1. Let $h, h^{\prime} \in S(\mathcal{H})$ with $\mathcal{V}_{h^{\prime}} \cap \mathcal{V}_{h} \neq \emptyset$. For $z, X \in \mathcal{H}_{h}$, we have

$$
\begin{aligned}
& \left(\beta_{h^{\prime}} \circ \beta_{h}^{-1}\right)(z)=\frac{h+z}{\left\langle h^{\prime} \mid h+z\right\rangle}-h^{\prime} \\
& \partial_{z}\left(\beta_{h^{\prime}} \circ \beta_{h}^{-1}\right)(X)=\frac{1}{\left\langle h^{\prime} \mid h+z\right\rangle} X-\frac{\left\langle h^{\prime} \mid X\right\rangle}{\left\langle h^{\prime} \mid h+z\right\rangle^{2}}(h+z)
\end{aligned}
$$

Definition A.2. We denote by Ω_{h} the local section

$$
\Omega_{h}([z]) \equiv \phi_{h}(z) z \quad\left([z] \in \mathcal{V}_{h}\right)
$$

By definition, $\left\langle h \mid \Omega_{h}(\rho)\right\rangle>0$ for $\rho \in \mathcal{V}_{h}$.

A.2. Transition functions

Let $h, h^{\prime} \in S(\mathcal{H})$ with $h^{\prime} \in \mathcal{V}_{h}$, then the transition function $Q_{h^{\prime} h}: \mathcal{V}_{h} \cap \mathcal{V}_{h^{\prime}} \rightarrow U(1)$ is

$$
Q_{h^{\prime} h}([z]) \equiv \frac{\left\langle z \mid h^{\prime}\right\rangle}{\left|\left\langle h^{\prime} \mid z\right\rangle\right|} \frac{\langle h \mid z\rangle}{|\langle h \mid z\rangle|}
$$

Fact A.3.

(i) $Q_{h h}([z])=1$ for $[z] \in \mathcal{V}_{h}$.
(ii) If $h, h^{\prime} \in S(\mathcal{H})$ satisfy $\left\langle h^{\prime} \mid h\right\rangle \neq 0$, then $Q_{h^{\prime} h}=Q_{h h^{\prime}}^{-1}$.
(iii) If $h, h^{\prime}, h^{\prime \prime} \in S(\mathcal{H})$ are mutually non-orthogonal, then

$$
Q_{h^{\prime \prime} h^{\prime}}([z]) \cdot Q_{h^{\prime} h}([z])=Q_{h^{\prime \prime} h}([z]) \quad\left([z] \in \mathcal{V}_{h} \cap \mathcal{V}_{h^{\prime}} \cap \mathcal{V}_{h^{\prime \prime}}\right)
$$

Lemma A.4. Let X be a tangent vector of $\mathcal{P}(\mathcal{H})$ at $\rho \in \mathcal{V}_{h} \cap \mathcal{V}_{h^{\prime}}$ which is realized in $\mathcal{H}_{h^{\prime}}$ and $\beta_{h^{\prime}}(\rho)=z$. Then

$$
\partial_{z}\left(Q_{h^{\prime} h}^{-1} \circ \beta_{h^{\prime}}^{-1}\right)(X)=-\frac{1}{2} \frac{\left\langle z+h^{\prime} \mid h\right\rangle^{2}\langle h \mid X\rangle}{\left|\left\langle h \mid z+h^{\prime}\right\rangle\right|^{3}} .
$$

Proof. The statement is proved by a simple computation.

Lemma A.5. In the notation of Lemma A. 4 we have:

$$
\left(Q_{h^{\prime} h} \circ \beta_{h^{\prime}}^{-1}\right)(w) \cdot \partial_{w}\left(Q_{h^{\prime} h}^{-1} \circ \beta_{h^{\prime}}^{-1}\right)(X)=-\frac{1}{2} \frac{\langle h \mid X\rangle}{\left\langle h \mid w+h^{\prime}\right\rangle}
$$

Proof. By Lemma A. 4 and the definition of Q, the statement follows easily.

A.3. Associated bundles of Hopf bundles

Let F be a C^{∞}-manifold with a left $U(1)$-action α and $S(\mathcal{H}) \times F$ the direct product space of $S(\mathcal{H})$ and F. Define a right $U(1)$-action γ on $S(\mathcal{H})$ by

$$
z \gamma_{c} \equiv \bar{c} z \quad(c \in U(1), z \in S(\mathcal{H}))
$$

We define $S(\mathcal{H}) \times_{U(1)} F$ as the set of all $U(1)$-orbits in $S(\mathcal{H}) \times F$, where the $U(1)$-action is defined by

$$
(z, f) c \equiv\left(z \gamma_{c}, \alpha(\bar{c}) f\right) \quad(c \in U(1),(z, f) \in S(\mathcal{H}) \times F)
$$

The topology of $S(\mathcal{H}) \times{ }_{U(1)} F$ is induced from $S(\mathcal{H}) \times F$ by the natural projection π : $S(\mathcal{H}) \times F \rightarrow S(\mathcal{H}) \times_{U(1)} F$. We denote the element of $S(\mathcal{H}) \times_{U(1)} F$ containing (x, f) by $[(x, f)]$. Define a projection

$$
\pi_{F}: S(\mathcal{H}) \times_{U(1)} F \rightarrow \mathcal{P}(\mathcal{H}), \quad \pi_{F}([(x, f)]) \equiv \mu(x)
$$

The fibration $\mathbf{F} \equiv\left(S(\mathcal{H}) \times_{U(1)} F, \pi_{F}, \mathcal{P}(\mathcal{H})\right)$ is called the associated bundle of $(S(\mathcal{H}), \mu$, $\mathcal{P}(\mathcal{H})$) by F. For $h \in S(\mathcal{H})$, define a map $\psi_{\alpha, h}: \pi_{F}^{-1}\left(\mathcal{V}_{h}\right) \rightarrow \mathcal{V}_{h} \times F$ by

$$
\begin{equation*}
\psi_{\alpha, h}([(z, f)]) \equiv\left(\mu(z), \phi_{\alpha, h}([(z, f)])\right)=\left(\mu(z), \alpha\left(\phi_{h}(z)\right) f\right) \tag{A.1}
\end{equation*}
$$

We have

$$
\psi_{\alpha, h}^{-1}([z], f)=\left[\left(z, \alpha\left(\frac{\langle h \mid z\rangle}{|\langle h \mid z\rangle|}\right) f\right)\right] \quad\left(([z], f) \in \mathcal{V}_{h} \times F\right) .
$$

The definition of $\psi_{\alpha, h}$ is independent of the choice of (z, f). Hence $\psi_{\alpha, h}$ is a local trivialization of \mathbf{F} at \mathcal{V}_{h}. The transition function on $\mathcal{V}_{h} \cap \mathcal{V}_{h^{\prime}} \times F$ is therefore

$$
\hat{Q}_{\alpha, h^{\prime}, h} \equiv \psi_{\alpha, h^{\prime}} \circ \psi_{\alpha, h}^{-1}:([z], f) \mapsto\left([z], \alpha\left(Q_{h^{\prime} h}([z])\right) f\right) .
$$

If F is a complex vector space, then the natural $U(1)$-action α is the scalar multiplication.

A.4. Recovery of the typical fiber

Let $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ be a Hopf bundle and F a complex Hilbert space. We consider the associated bundle $S(\mathcal{H}) \times{ }_{U(1)} F$ which is done w.r.t. the natural action of $U(1)$ on F.

Proposition A.6. There is the following equivalence of fiber bundles on $\mathcal{P}(\mathcal{H})$:

$$
\left(S(\mathcal{H}) \times_{U(1)} F\right) \times_{\mathcal{P}(\mathcal{H})} S(\mathcal{H}) \cong S(\mathcal{H}) \times F
$$

Proof. Let X_{1} be the l.h.s. in the above statement. We note that any element of X_{1} is written as $([(h, v)], h)$, where $[(h, v)] \in S(\mathcal{H}) \times_{U(1)} F$ because $\pi_{F}([(h, v)])=\mu(h)$ and we can choose the phase factor of (h, v) according to h. Let

$$
\hat{\pi}_{F}: X_{1} \rightarrow \mathcal{P}(\mathcal{H}), \quad \hat{\pi}_{F}([(h, v)], h) \equiv h
$$

Define

$$
\Phi: X_{1} \rightarrow S(\mathcal{H}) \times F, \quad \Phi([(h, v)], h) \equiv(h, v)
$$

Then Φ is well defined and bijective. Furthermore

$$
\left(\mu_{F} \circ \Phi\right)([(h, v)], h)=\mu_{F}(h, v)=h=\hat{\pi}_{F}([(h, v)], h) .
$$

Therefore $\mu_{F} \circ \Phi=\hat{\pi}_{F}$ and (Φ, id) is a bundle map between X_{1} and $\left(S(\mathcal{H}) \times F, \mu_{F}\right.$, $\mathcal{P}(\mathcal{H})$).

Proposition A.7. Let α be a transitive action of a group G on $S(\mathcal{H})$ and consider the action

$$
\hat{\alpha} \equiv\left(\alpha \times_{U(1)} 1\right) \times_{\mathcal{P}(\mathcal{H})} \alpha,
$$

of G on $X_{1} \equiv\left(S(\mathcal{H}) \times_{U(1)} F\right) \times_{\mathcal{P}(\mathcal{H})} S(\mathcal{H})$. Then the quotient Y_{1} of X_{1} w.r.t. the action $\hat{\alpha}$ is canonically identified with the linear space F.

Proof. For $[x]=[([(h, v)], h)] \in Y_{1},[x]=\left\{\left(\left[\left(\alpha_{g} h, v\right)\right], \alpha_{g} h\right): g \in G\right\}$. Hence we can take the quotient Φ to the bijection

$$
\tilde{\Phi}: Y_{1} \rightarrow S(\mathcal{H}) \times F, \quad \tilde{\Phi}([x]) \equiv[\Phi(x)] .
$$

A.5. Connections on an associated bundle of a Hopf bundle

Let $\mathbf{F} \equiv\left(S(\mathcal{H}) \times_{U(1)} F, \pi_{F}, \mathcal{P}(\mathcal{H})\right)$ be an associated vector bundle of a Hopf bundle $(S(\mathcal{H}), \mu, \mathcal{P}(\mathcal{H}))$ by a complex Hilbert space F. Let $\Gamma(\mathbf{F})$ be the set of all smooth sections of \mathbf{F}, that is the set of right inverses of the projection π_{F}. By the standard operations, $\Gamma(\mathbf{F})$ is a complex linear space.

Definition A.8. D is connection on \mathbf{F} if D is a bilinear map of complex vector spaces $D: \mathfrak{X}(\mathcal{P}(\mathcal{H})) \times \Gamma(\mathbf{F}) \rightarrow \Gamma(\mathbf{F})$ which is $C^{\infty}(\mathcal{P}(\mathcal{H}))$-linear with respect to $\mathfrak{X}(\mathcal{P}(\mathcal{H}))$ and satisfies the Leibniz law with respect to $\Gamma(\mathbf{F})$:

$$
D_{Y}(s \cdot l)=\partial_{Y} l \cdot s+l \cdot D_{Y} s \quad\left(s \in \Gamma(\mathbf{F}), l \in C^{\infty}(\mathcal{P}(\mathcal{H})) Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H}))\right) .
$$

For $Y \in \mathfrak{X}(\mathcal{P}(\mathcal{H})), h \in S(\mathcal{H})$ and $\rho \in \mathcal{V}_{h}$, we denote by Y_{ρ}^{h} the corresponding tangent vector at ρ in a local chart. Assume that a connection D on \mathbf{F} can be written as $\partial+A$. Then $D_{Y}=\partial_{Y}+A_{Y}$ is a linear map on $\Gamma(\mathbf{F})$. If $\left.D_{Y}\right|_{\rho} ^{h}$ is the local expression of D_{Y} on the local trivial chart w.r.t. $h \in S(\mathcal{H})$ and $\rho \in \mathcal{V}_{h}$, then we obtain families of linear maps

$$
A_{Y, \rho}^{h}: F \rightarrow F
$$

such that $\left.\partial_{Y}\right|_{\rho} ^{h}+A_{Y, \rho}^{h}=\left(\partial_{Y}+A_{Y}\right)_{\rho}^{h}=(\partial+A)_{Y, \rho}^{h}$.
Fact A.9. The family $\left\{A_{Y, \rho}^{h}\right\}$ is the local expression of a connection $D \equiv \partial+A$ on \mathbf{F} if and only if the following equality is satisfied:

$$
\begin{equation*}
A_{Y, \rho}^{h^{\prime}}=-\frac{1}{2} \frac{\langle h \mid Y\rangle}{\left\langle h \mid z+h^{\prime}\right\rangle}+A_{Y, \rho}^{h} \quad\left(\rho \in \mathcal{V}_{h^{\prime}} \cap \mathcal{V}_{h}\right) \tag{A.2}
\end{equation*}
$$

where Y is a holomorphic tangent vector of $\mathcal{P}(\mathcal{H})$ at ρ which is realized on $\mathcal{H}_{h^{\prime}}$ and $z=$ $\beta_{h^{\prime}}(\rho)$.

Proof. By Leibniz rule and Lemma A.5, we obtain the formula directly.

Appendix B. Lemma for the main theorem

We prepare some equations for the main theorem. For $\rho \in \mathcal{V}_{h}$, define a vector in Ω_{ρ}^{h} in \mathcal{H}_{b} by

$$
\Omega_{\rho}^{h} \equiv \frac{\beta_{h}(\rho)+h}{\sqrt{1+\left\|\beta_{h}(\rho)\right\|^{2}}}
$$

Assume that $\rho=\omega_{x} \circ \pi_{b}$ for $x \in \mathcal{H}_{b},\|x\|=1$. Then $[x]=\left[\Omega_{\rho}^{h}\right]$ and $\left\langle h \mid \Omega_{\rho}^{h}\right\rangle>0$. Let s be a section in $\Gamma\left(\mathcal{E}_{X}\right)$ such that for each $\rho \in \mathcal{P}_{b}$, there is $\xi_{\rho} \in X$ which satisfies $s(\rho)=\left[\xi_{\rho}\right]_{\rho} \in \mathcal{E}_{X, \rho}$. Let $z=\beta_{h}(\rho)$ for $h \in S\left(\mathcal{H}_{b}\right)$ such that $\rho \in \mathcal{V}_{h}$.

Lemma B.1. Let $\psi_{\alpha, h}$ be as in (A.1). Then the following equations hold:

$$
\begin{align*}
\left\langle e \mid \psi_{\alpha, h}(s(\rho))\right\rangle & =\frac{\left\langle\Omega_{\rho^{\prime}}^{h} \mid \pi_{b}\left(\left\langle\xi^{\prime} \mid \xi_{\rho}\right\rangle\right)(z+h)\right\rangle}{\sqrt{1+\|z\|^{2}}}\left(e=\mathcal{O}\left(\left[\xi^{\prime}\right]_{\rho^{\prime}}, h\right) \in F_{X}^{b}\right), \tag{B.1}\\
\partial_{Y} \phi_{h}(\rho)(s(\rho)) & =\mathcal{O}\left(\left[\partial_{Y} \hat{\xi}_{\rho}+\xi_{\rho}\left(K_{Y, \rho}^{h}-\frac{\langle z \mid Y\rangle}{2\left(1+\|z\|^{2}\right)}\right)\right]_{\rho}, h\right) \tag{B.2}
\end{align*}
$$

where $K_{Y, \rho}^{h} \in \mathcal{A}$ is defined by

$$
\begin{equation*}
\pi_{b}\left(K_{Y, \rho}^{h}\right)(h+z)=Y, \tag{B.3}
\end{equation*}
$$

and $\left[\partial_{Y} \hat{\xi}_{\rho}\right]_{\rho} \in \mathcal{E}_{X, \rho}$ is defined by

$$
\left\langle[\eta]_{\rho} \mid\left[\partial_{Y} \hat{\xi}_{\rho}\right]_{\rho}\right\rangle_{\rho} \equiv \rho\left(\partial_{Y}\left\langle\eta \mid \xi_{\rho}\right\rangle\right)
$$

for $[\eta]_{\rho} \in \mathcal{E}_{X, \rho}$.

Proof. Let $\phi_{\alpha, h}:\left(\Pi_{X}^{b}\right)^{-1}\left(\mathcal{V}_{h}\right) \rightarrow F_{X}^{b}$ be the map defined by

$$
\psi_{\alpha, h}(x)=\left(\mu_{b}(h), \phi_{\alpha, h}(x)\right)
$$

For $e=\mathcal{O}\left(\left[\xi^{\prime}\right]_{\rho^{\prime}}, h\right) \in F_{X}^{b}$ such that $h \in \mu_{b}^{-1}(\rho)$, we have

$$
\left\langle e \mid \phi_{\alpha, h}(s(\rho))\right\rangle=\left\langle\mathcal{O}\left(\left[\xi^{\prime}\right]_{\rho^{\prime}}, h^{\prime}\right) \mid \mathcal{O}\left([\xi]_{\rho}, h\right)\right\rangle=\frac{\left\langle\Omega_{\rho^{\prime}}^{h} \mid \pi_{b}\left(\left\langle\xi^{\prime} \mid \xi_{\rho}\right\rangle\right)(z+h)\right\rangle}{\sqrt{1+\|z\|^{2}}}
$$

From this we get

$$
\begin{aligned}
\left\langle e \mid \partial_{Y} \phi_{h}(\rho)(s(\rho))\right\rangle= & \frac{\left\langle\Omega_{\rho^{\prime}}^{h} \mid \pi_{b}\left(\partial_{Y}\left\langle\xi^{\prime} \mid \xi_{\rho}\right\rangle\right)(z+h)\right\rangle}{\sqrt{1+\|z\|^{2}}}+\frac{\left\langle\Omega_{\rho^{\prime}}^{h} \mid \pi_{b}\left(\left\langle\xi^{\prime} \mid \xi_{\rho}\right\rangle\right) Y\right\rangle}{\sqrt{1+\|z\|^{2}}} \\
& -\frac{\left\langle\Omega_{\rho^{\prime}}^{h} \mid \pi_{b}\left(\left\langle\xi^{\prime} \mid \xi_{\rho}\right\rangle\right)(z+h)\right\rangle\langle z \mid Y\rangle}{2\left(\sqrt{1+\|z\|^{2}}\right)^{3}}
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\partial_{Y} \phi_{h}(\rho)(s(\rho))=\mathcal{O}\left(\left[\partial_{Y} \hat{\xi}_{\rho}+\xi_{\rho}\left(K_{Y}^{h}-\frac{\langle z \mid Y\rangle}{2\left(1+\|z\|^{2}\right)}\right)\right]_{\rho}, h\right) . \tag{B.4}
\end{equation*}
$$

References

[1] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II, Springer, New York, 1979, 1981.
[2] N. Bourbaki, Elements of Mathematics, General Topology: Part I, Addison-Wesley, Reading, MA, 1966.
[3] R. Cirelli, A. Manià, L. Pizzocchero, A functional representation of noncommutative C^{*}-algebras, Rev. Math. Phys. 6 (5) (1994) 675-697.
[4] A. Connes, Non commutative differential geometry, Publ. Math. IHES 62 (1986) 257-360.
[5] A. Connes, Non Commutative Geometry, Academic Press, Orlando, 1993.
[6] K.K. Jensen, K. Thomsen, Elements of KK-Theory, Birkhauser, Basel, 1991.
[7] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vols. I-IV, Academic Press, New York, 1983.
[8] M. Karoubi, K-Theory An Introduction, Springer, Berlin, 1978.
[9] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. I, Interscience, New York, 1969.
[10] G.K. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, New York, 1979.
[11] J.C. Várilly, J.M. Gracia-Bondía, Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993) 223-301.

[^0]: E-mail address: kawamura@kurims.kyoto-u.ac.jp (K. Kawamura).

