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Abstract

For a HilbertC*-moduleX over aC*-algebraA, we introduce a vector bundi associated to
X. We prove thaEx has an hermitian metric and a flat connection. We introduce a vector space
of holomorphic sections dfx with the following properties: (iYx is a Hilbert.A-module, (ii) the
action of A on I'y is defined by means of the connection4f (iii) the C*-inner product ofl'y is
induced by the hermitian metric &% .

We prove that the Hilber€*-modulel'y is isomorphic toX.

This sectional representation is a generalization of the Serre—Swan theorem to non-commutative
C*-algebras. We show thdly is isomorphic to an associated bundle of an infinite dimensional
Hopf bundle with the structure grouj(1).
© 2003 Elsevier Science B.V. All rights reserved.

MSC:46L87
Subj. ClassQuantum mechanics; Non-commutative geometry

Keywords:Non-commutative geometry; Serre-Swan theorem; Hil6&rmodule

1. Introduction

The Serre—Swan theor€® is described as follows.
Theorem 1.1 (Serre-Swan)Let §2 be a connected compact Hausdorff space ais)
the algebra of all complex valued continuous function&0Assume thaX is a module over
E-mail addresskawamura@kurims.kyoto-u.ac.jp (K. Kawamura).
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C(£2). Then X is finitely generated projective iff there is a complex vector bundle & on
such that X is isomorphic onto the module of all continuous sections of E

By Theorem 1.1finitely generated projective modules ow&¢s2) and complex vector
bundles o2 are in one-to-one correspondence up to isomorphisms. In non-commutative
geometny[5,11], some class of modules over a non-commutatitealgebraA are treated
as vector bundles on a “non-commutative spadefjeneralizing Serre—Swan theorem for
commutativeC*-algebras.

On the other hand, for a unital general non-commutaiii«@algebraA, there is a uniform
Ké&hler bundlgP, p, B) [3] unique up to equivalence classAfsuch thatd is * isomorphic
onto a uniform Ké&hler function algebra @, p, B), what is a natural generalization of
Gel'fand representation. We carefully review the uniform Kéhler bundle and the functional
representation of non-commutati¥é-algebras irbection 2Under the above consideration,
we state the following theorem which is a version of the Serre—Swan theorem generalized
to non-commutative&™*-algebras.

Theorem 1.2. Let X be a HilbertC*-module over a unital*-algebra 4, (P, p, B) the
uniform Kahler bundle of4, C, (P) the C*-algebra of uniform Kahler functions oA and
[ A=K, (P) the Gel'fand representation of:

(i) There is a complex vector bundi on P with a hermitian metric H and a flat
connection D and a bundle magy from the trivial vector bundl&X x P onP to £x
with dense image, at each fiber

(i) LetI'x = (Px)«(TconstX X P)) C Thol(Ex), wherelons( X x P) is the set of all
constant sections of x P and I'to(£x) is the set of all holomorphic sections&f.
Thenrly is a Hilbert IC,, (P)-module with the righk-action

I'xy x K,(P) — Ix,
(s,) > sxl=s-1++/—1Dx,;s ((s,1) € I'x x K, (P)),

and theC*-inner product
Hlryxry - I'x x I'x = Ky (P),

where X; is the holomorphic part of the complex Hamiltonian vector field &f
K, (P) C C*(P) with respect to the Kahler form @?.

(i) Under an identificationf : A = K,(P), I'x is isomorphic to X as a Hilber#-
module

In Section 3.1we introduce the atomic bundé; of a Hilbert C*-moduleX, which is
a Hilbert bundle orP. We discuss its geometrical structureSaction 3.31n Section 4.1
we define a flat connectio® on the atomic bundle. IiSection 4.2 we prove that any
connection on the atomic bundle defines-action of the algebra of smooth functions on
P on the vector space of holomorphic sections£gf In Section 5 we give a proof of
Theorem 1.2
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Here we summarize correspondences between geometry and algebra

Gel'fand representation Serre-Swan theorem
vector module
space algebra bundle
(V)
o 0 ) I(E)
pointwise ce E — | pointwise
product action
NCG | P—>B| Ku(P) NCG [&x—P| Tx
*-product *-action

where we call respectively, C& commutative geometry as a geometry associated with
commutativeC*-algebras, and NC& non-commutative geometry as a geometry associ-
ated with non-commutativ€*-algebras by following4].

2. Preparation
2.1. Uniform Kahler bundles

We start from the geometric characterization of the set of all pure states and the spectrum
of aC*-algebrg3]. Assume now thak and M are topological spaces.

Definition 2.1. (E, u, M) is called a uniform K&hler bundle if it satisfies the following
conditions:

(i) w is an open, continuous surjection betwdeand M,
(i) the topology ofE is induced by a given uniformity,
(iii) each fiberE,, = u~1(m) is a Kéhler manifold.

The local triviality of uniform Kahler bundle is not assumed.is, in general, neither
compact nor Hausdorff.

We simply denot&E, i, M) by E. For uniform spaces, s¢2]. Any metric space is a
uniform space. Examples and relations with conoftalgebras are given BBxample 2.6
Roughly speaking, the fibers of the uniform Kahler bundle taken into account the non-
commutativity of theC*-algebra.

Definition 2.2. Two uniform Kahler bundlegE, i, M), (E’, i/, M") areisomorphicif there
is a pair(8, ¢) of a uniform homeomorphist : E — E’ and a homeomorphisgh: M —
M', such thay' o B = ¢ o u and any restrictios| -, : w~1(m) — (1)~ H¢(m)) is a
holomorphic Kéhler isometry for any € M. We call(8, ¢) a uniform Kéhler isomorphism
betweenE, u, M) and(E’, u', M').

For example, any Kéhler manifold is a uniform Kahler bundle with a one-point set as
the base space. In the same way, the metric direct sum of Kahler mar{ifgids, is a
uniform K&hler bundle with a-point set as base space, endowed with the discrete topology.
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Any compact Hausdorff spack is a uniform spaceX is a uniform Kahler bundle with
zero-dimensional fiber with itself as the base sgate

We explain the non-trivial third example of uniform Kéahler bundles as follows.4 at
unital C*-algebra. Denot@® the set of all pure states gf, endowed with they*-uniformity,
i.e. the uniformity which induces the*-topology. By the GNS representation.df there
is a natural projectiop from P onto the spectrun® of A, the set of all equivalence classes
of irreducible representations @f. The projectiorp is continuous whem is endowed with
the Jacobson topolod¢0].

If Ais commutative, the® = B = “the set of all maximal ideals ofl” is a compact
Hausdorff space. If] the following results are proved.

Theorem 2.3 (Reduced atomic realizationfor any unitalC*-algebra A, (P, p, B) is a
uniform Kahler bundle

Let (H;, mp) be an irreducible representation belongingte B. Thenp € P corre-
spondst,] € P(Hp) = (Hy\ {0})/C*, wherep = wy, o 1, andw,, denotes a vector state
wyx, = (x,|(-)x,). ThenP, has a Kahler manifold structure induced by the bijection

Py > P(Hy), () = [x,). (2.1)
The Kéhler distancé), on a fiberP, = P(H}) is given by
dy(p, p') = V2 arco$(x,|x,)| (o, p' € Py),

which is the length of shortest geodesic arc betweandp’ in Pp.

Theorem 2.4. Let A; beC*-algebras with associated uniform Kahler bundi&s, p;, B;),
i =1,2.ThenA; and. Az are* isomorphic if and only ifP1, p1, B1) and (P2, p2, B2) are
isomorphic as uniform Kahler bundles

By this theorem, the uniform Kahler bundi@®, p, B) associated with4 is uniquely
determined up to uniform Ké&hler isomorphisms. From now on, we cdhdtuniform
Kéhler bundle associated witH.

2.2. Afunctional representation of non-commutatiVealgebras

We reconstruct4 from the uniform Kahler bundl€P, p, B) associated withd. Since
P, = p~L(b) c Pis a Kahler manifold for each € B, we can consider the fiberwise
smooth & smooth inP, for eachb € B) functions onP. Let

C™(P) : the setof all fiberwise smooth complex valued function®on

Forl € C*(P), we denoteX; the holomorphic Hamiltonian vector field éfdefined by
the equation

0p(X)p, Yp) = 3,1(Y,) (Y, e T,P) for peP, (2.2)
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wherew denotes the Kahler form off (defined on each fiber, the anti-holomorphic
differential operator o> (P) andT,P denotes the anti-holomorphic tangent spac® of
atp € P. A productx on C*°(P) is defined by

lsm=1-m+~=1Xul (I,me C®(P)). (2.3)

If the involution* is defined ornC>° () by complex conjugation, thei > (P), x) becomes
a*-algebra with unit which is not associative in general. By ughg), thex-product can
be written as follows:

Ism=1-m+~=1o(X;, Xp).
Let us introduce the Kéhler brackiet -} with respect tav, by
{I,m} = o(X;, Xp) + 0(Xp, Xn) (I, m € CX(P)).
Then the following equality holds:
Ism—mxl=~—1{,m} (,meC>(P)). (2.4)

Theorem 2.5 (Gel'fand representation of non-commutati¢&-algebras).For a non-
commutativaC*-algebra.A, the Gel'fand representation

fa(p)=p(A) (A€ A peP),
gives an injectivé homomorphism of unitdl-algebras
fiA—=C®P), A fa,

whereC*(P) is endowed with the above definegroduct. For a function | in the image
f(A) of the map fset

11l = supi@ = D(p)[*/2. (2.5)
peP
This defines a*-norm on the associativesubalgebraf(.A). By this norm ( f(A), *) is

isomorphic toA.
Furthermore f(A) is precisely the subsét, (P) c C*°(P) defined by

27 _ N2;
Ku(P)=31e€C®P): _ Di=0D1=0 } (2.6)

Ix1,1%1,1areuniformly continuous oR

whereD and D are the holomorphic and anti-holomorphic pamspectivelyof covariant
derivative of Kahler metric defined on each fibeffoHence the following equivalence of
C*-algebras holds

A=Ky (P).

We call (IC, (P), *) the C*-algebra of uniform Kéhler functions dh.
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By the above results, we obtain a fundamental correspondence between algebra and
geometry as follows:

unital commutative_*-algebra < compact Hausdorff space

N N

unital generally non-commutativé*-algebra < uniform Kahler bundle associated wittC&-algebra

The upper correspondence above is just the Gel'fand representation of unital commutative
C*-algebras.

Example 2.6. Assume that{ is a separable infinite dimensional Hilbert space.

(i) When A = L(H) is the algebra of all bounded linear operators?nthe uniform
Kahler bundle of4 is (P(H) U P_, p, 201 U {bo}), whereP(H) is the projective
Hilbert space of4, P_ is the union of a family of projective Hilbert spaces indexed by
the power set of the closed interval [ and{bo} is the one-point set corresponding
to the equivalence class of identity representatiinid ;) of L(H) onH. Since
the primitive spectrum of (%) is a two-point set, the topology of% U {ho} is equal
to {#, 201 {be}, 210-11 U {bg}} [7]. In this way, the base space of the uniform Kahler
bundle is not always a singleton when ti&-algebra is typd.

(iiy For the C*-algebraA generated by the Weyl form of the one-dimensional canonical
commutation relatiorU(s) V(r) = e‘/?lStV(t)U(s) for s,t € R, its uniform Kahler
bundle is(P(H), p, {1pt}). The spectrum is a one-point §&pt} since von Neumann
uniqueness theoreft].

(iii) The CAR-algebrad is a UHF algebra with the negi2: (C)},en. The uniform Kéhler
bundle has the base spad®énd each fiber on"is a separable infinite dimensional
projective Hilbert space wherd'as the power set of the sbt of all natural numbers
with trivial topology, that is, the topology of¥2is just{@, 2N}. In general, the Jacobson
topology of the spectrum of a simp{&-algebra is trivia[7].

3. Theatomic bundle of aHilbert C*-module

The aim of this section is the construction of a natural vector bundle for a given Hilbert
C*-module over aC*-algebra.

3.1. The construction of the atomic bundle

Before starting to construct the atomic bundle of a Hilb&tmodule, we state the
definition of a HilbertC*-module.

Definition 3.1 ([6]). X is aHilbertC*-module over &*-algebraAif X is aright4-module
and there is amd valued sesquilinear form

(|V: XxX— A,
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which satisfies the following conditions:

(nléa) = l&)a (.6 € X,a € A), ((EN* = &) (n, & € X),
(15 =0 (X)), (15)=0=£6=0 (£eX),
andX is complete with respect to thé-valued norm defined by
IEl = 1EBIY2 ¢ e X). (3.1)

Let X be a HilbertC*-module over a unitaC*-algebraA and (P, p, B) the uniform
Kéahler bundle associated with. Defining a closed subspagg, of X with p € P by

N, ={£ € X :p(I€]%) =0}, (3-2)
we consider the quotient vector space
&= X/N,. (3.3)

equipped with the sesquilinear forfit-) , on &% | defined by
(1o &p x €, = C, ([Elplnlp)p = pCEIM)  ([Elps [l € €% p)s
where
Elp=E+N,e&, (EeX). (3.4)

Then(-|-), becomes an inner product 6\}1). Let &y, , be the completion 053’(7’) by the

norm|| ||, = ({-|-),)/2. We obtain a Hilbert spad&€x.,, (-|-),,) from a HilbertC*-module
X for each pure state € P. We note that, andé’xp, are equivalent Hilbert spaces when

0,0 € Pp.

Definition 3.2. The atomic bundl€x = (Ex, ITx, P) of a Hilbert C*-module X over a
C*-algebraA is defined as the fiber bundfs, onP:

Ex = Jéxp:
peP

where the projection maffy : £x — Pis defined bylTx (x) = p for x € Ex .

The atomic bundle is the collection of isfibers, where fob € B, the B-fiber &% of X
is the bundle &y, 1%, Py), defined by

&= Uéxp Oy~ Pp Mi=TMxlg.
pEPy

3.2. Unitary group action on the atomic bundle
Let G be the group of all unitary elements.iq Define an actiory of G onP by

xu(p) =poAdu* (ueG,peP).
Theny, mapsP, to P, for eachb € Bandu € G.
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Lemma 3.3. G acts transitively orP, by Kéhler automorphisms

Proof. By irreducibility of the GNS representation of pure states, the statement follows
immediately. O

Next, define an actiorf of G on €% = U ,cp €%, bY

peP
(&) =600 (e G [E], €% ).

1 is well defined since the mapr> &u* mapsN, to Ny, (,). As ) is a unitary map from
EX p10EY ,.(p Wecan extend, as a unitary map frorfix , to x4, (». We note that

L) =e’(x) (ueG,ceUQ)). (3.5)

We define an actionof G on &y byr|g§,( =*, b € B. ThenT = (1, x) is an action ofG

on (£x, ITx, P) by bundle automorphisms. This action preserBefibers (£%, 17;’(, Pb),
b € B, too.

Consider now the Hopf bundIleS(Hy), 1y, Pp) (seeAppendix A). For the fibrations
(&%, 1%, Py) and(S(Hy), s, Pp), define their fiber produdy "™ c €4 x S(H,) by

EXVD = &% xp, S(Hp) = ((x. h) € E x S(Hp) - T(x) = pp()}.
Thus an action” of G on é"}’(’U(l) is defined by

ol (x, h) = (1, (), Tp)h)  ((x, h) € &2V u e G).
We note that a representati6H,;,, ;) of A induces an action aff on S(Hy).
Lemma3.4. For (x,h) € &2YP andu € G, if ob(x, h) = (y, h), thenx = y.

Proof. We have just to consider the case &% ,. Letx = [§],. By assumption(y, h) =
([&u™1 4, (o) T (w)R). Henceh = m,(u)h or, equivalently

T *h = h. (3.6)

By definition of fiber product, we havg,(p) = p andy = [£u*],. By using the above
results, we obtain:

Ix = yI% = p(lE — &u*1%) = p(IE12) + pulE]2u*) — p((EIEYU*) — p(u&l8)),
with p = (h|m,(-)h). Thereforg3.6)implies
Ix = ylI% = 2p(IE11%) — p((£1€)) — p((£1)) = O.

Hence we obtain = y. O

Definition 3.5. F% is the set of all orbits o in £5Y".
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Let O(x, h) € F% be the orbit containingx, 1) € &Y™,
O(x, h) = {02(x, h) : u € G} = {(t,(x), mp(u)h) : u € G}.

By Lemma 3.4 any element o®(x, k) is written as(yy’, 1), wherey,, is an element of
Sﬁ’( determined by:’ € S(#;) uniquely. HenceF§ is a family of spheres iﬁ?’;{’U(l), each
homeomorphic t&(Hy).

Lemma3.6. For (y, ') in O(x, h), if y = x # 0,thenh =K',

Proof. By the choice ofx, #'), there isu € G such thav? (x, h) = (x, #'). t2(x) = x and
wp(u)h = h'. Sinceuy(h') = Hﬁ’((x) = up(h), there isc € U(1) such that’ = ch. Hence
we can choose = cl. Then we have

x =t = (x) = ctb(x) = ex,
by (3.5). Thereforec = 1 and we obtairk = 4’ whenx # 0. O

Corollary 3.7. For ¢ € U(1), O(x, ch) = O(cx, h).

FurthermoreO(0, k) = {(0, ) : b’ € S(Hp)}. Let (3. h') € Ox, h) N (Ex, ) ¥
S(Hp)). Then there ist € G such that(y, ') = o,(x, h). By the choice of(y, h'), i’ €
M;l(,u,;,(h)). Hence there is € U(1) such that#y’ = ch.

Proposition 3.8. F§ is naturally identified with the Hilbert spacy ,, for eachp € Py.
3.3. Structure of the atomic bundle

We shall prove that the atomic bundle has a Hilbert bundle structurdSi&f,) x (1)
F?, 7y P(Hp)) be the associated bundle@(#y). us, P(Hy)) by F% where the Hilbert

space structure oﬁ)l} is defined according tBroposition 3.8

Lemma 3.9. Any element ofS(#H,) Xy F§ can be written aq(h, O(x, h))] where
O(x, h) € Fb.

Proof. By definition of the associated bundiggpendix A.3, an element o§ (1) x (1) F§
is the U(1)-orbit [(h, O(x, k))]. Take an element(k, O(y, k))] € S(Hp) xu) F,”(. By
definition of O(y, k) and the transitivity of the action a¥ on S(#), there isu € G such
thath = ukand(tfj(y), h) € O(y, k). Denotex = t,(y). ThenO(x, h) = O(y, k). Hence
[(h, Oy, k)] = [(h, O(x, h))]. g

From now on, we shall denote
[h, x] = [(h, O(x, h))] € S(Hp) xuq) Fy
for h € S(H) andx € &%.
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Recall for eaclb € B, P, is a Kéhler manifold which is isomorphic to a projective Hilbert
spaceP(H,) by the mapr’.

Theorem 3.10. For eachb € B, the B-fiber (&%, IT%, P,) at b is a locally trivial Hilbert
bundle isomorphic t@S(H,) xy) F2, 7 gt » P(Hp)).

Proof. Define a mapl? : & — S(Hp) xuq) F4 by W2 (x) = [hy, x]  (x € £%), where
hy €yt (15 (x). If Wo(x) = wh(y) for x,y € &, then b, x] = [K', y]. Therefore
there isc € U(1) such that(h, O(x, h))c = (h', O(y, h’)). By h’ = ch andCorollary 3.7
O(y, ¢h) = O(x, ¢h). By Lemma 3.4 we getx = y, so that¥? is injective. By defini-
tion of F%, " is surjective, henc@’ is a bijection. We obtain a set-theoretical isomor-
phism(¥?, t°) of fibrations betweeri&, 11%, Pp) and (S(Hp) x v F%, 7y Pp) such

that any restrictionlfblgx,p of ¥b at a fiber€x , is a unitary betwee€y , and n;,,l(,o)
X

for p € Pp.
This isomorphism induces ad’, Hé’(, Pp) the Hilbert bundle structure of the associated
bundle(S(Hs) xuq Fy. 7y Ps). O

By Theorem 3.1(and Definition 3.2 we have constructed in a canonic way a locally
trivial Hilbert bundle from a HilberC*-module and we understand that the atomic bundle
of a Hilbert C*-module is a family of associated bundles of Hopf bundles indexed by
spectruma:

Ex = | J(S(Hy) xuay FR)-
beB

We conclude this section by introducing a bundle map to be us&edtion 5 Let (X x
P, t, P) be the trivial complex vector bundle 1 Then we introduce the map

Px: XxP—E&x; Px&p=I[&, (&peXxP). (3.7
The imagePx (X x P) is dense ir€%,, for everyb € B. MoreoverPx (&', p) = Px(&, p)
ifand only if¢ — & € N,, for p € P. Then(Py, id) is a bundle map froniX x P, 7, P) to
(&x, MIx, P).

4. Connection and %-action

In this section, we define a flat connectifrnon the atomic bundle and prove a relation
between the associativity efaction defined byD and the flatness db.

4.1. The atomic connection of the atomic bundle

To define thex-action of (C*°(P), %) on the smooth sections of the atomic bundle of a
Hilbert C*-moduleX, we define a connectiob of £x, called the atomic connection.



K. Kawamura/Journal of Geometry and Physics 48 (2003) 275-296 285

LetEx = (Ex, [Ty, P) be the atomic bundle of a Hilbeft*-moduleX over aC*-algebra
A. Let I'(Ex) be the set of all bounded sections&f, that is,[(€x) 3 s: P — Exisa
right inverse oflTx and satisfies

sl = supls(p)ll, < oo. (4.1)
peP

By standard operationg(€x) is a complex linear space, isometric to the Banach direct
sum®,pEx,,. By Theorem 3.10we can consider the differentiability efe I'(€x) at
eachB-fiber s|p, : P, — &4 for eachb € B in the sense of Fréchet differentiability of
Hilbert manifolds. Defind, (£x) the set of allB-fiberwise smooth sections i(Ex).

A hermitian metricH is defined or€y by

H,(s,s") = (s(p)Is'(0))p (4.2)

forp e P, s, s € I's(Ex) [9]. Let X(P) be the set of alB-fiberwise smooth vector fields
of P.

Definition 4.1. A connection or€y is a C-bilinear mapD which is C*°(P)-linear with
respect tdX(P) and satisfies the Leibniz law with respectiig (£x):

Dy(s-1)=0yl-s+1- Dys
fors € I'no(Ex),1 € C*(P) andY € X(P).

Forh € S(H,) we consider a trivializing neighborhodd, for the Hopf bundle (see
Appendix A.D. For a fixedp € V, andY € X(P,), we denote byY[)’ the corresponding
tangent vector ap in local coordinates and by the linear operator of multiplication by
number

1 BolYy)
214 11Br(0)1I?

Proposition 4.2. D@"p = ayg + A’{,’p gives the local expression of a flat connectidfon
.

Proof. We prove the cocycle condition for the family of linear maps= {Ah}hes(yh),
where A" : 1, — L(FY) is defined byA” (v!) = A’;’p. For p € Py, chooseh, i’ e
S(Hp) such thato € V, NV, The cocycle condition foA is given by formula(A.2) in
Appendix A.5

Letz = Bu(p), z = Br(p). By a simple computation, we get

(X"

, h|x"
i 2 A o
Z

—2.An — . -—r
X XL (hl + h)

and formula(A.2) holds. Therefor@’ip gives the local expression of a connectidh The
curvaturer? of D’ can be expressed as:

Ry = (AAX, N+ (AN AKX, V) (X.Y € X(Pp)).
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SinceA is scalarA A A = 0. In a chart(V,, 8, Hy) of p € P, andz = By (o) € Hy,, we
have

(d:A) (X, Y) = XAY, — YR, . — Al y..

By simple computation we obtai@,A)(X, ¥) = 0, so thatR” = 0 andD? is flat. O

Definition 4.3. We call the connection ifProposition 4.2he atomic connection of the
atomic bundle.

4.2. Thex-action of a function algebra on sections of the atomic bundle

By (2.3), the function spac€° (P) is ax-algebra with«-product which is generally not
associative. We define theaction of (C*(P), x) on the smooth sections of the atomic
bundle of a HilbertC*-module by using the atomic connectiénof £x. We characterize
algebraic properties, commutativity, associativityxedction byD and the curvature &y
with respect taD. Now we denote byD any connection o8’y

Definition 4.4. We define the (rightx-action of C*°(P) on I'(Ex) by
sxl=s-14++—1Dx,;s

forl € C®°(P) ands € I'x(Ex), whereX; is the holomorphic Hamiltonian vector field of
[ with respect to the Kahler form @?.

We give a geometric characterization of the abgation.

Lemma4.5. For eachs € I'x(Ex) andl, m € C*°(P), the following equations hold

(sxDsxm—(sxm)=*l=(/=UI,m}+[Dx,, Dx,,]s.
sx(Ixm)—sx*(mx*l) = -1, m}+ Dix, x,])s.
Proof. The first equation follows immediately by
(sxD)xm—(sxm)x*l
=+/—1Dx, (s - 1) + V—=1((Dx,s) - m +~/—=1Dx, Dx,s) — ~—=1Dx,(s - m)
—-~-1U(Dx,,s) -l +~—1Dx,Dx,,s),
since
Xl — Xym = {l, m}.

The proof of the second equation is analogous. O

Remark 4.6.

() By Lemma 4.5the non-commutativity of-action ofC*°(P) on I'c(£x) depends on
the connectioD of £x and the Kahler form oP.
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(i) We denote three different notiong;action, x-product and involution by the same
symbol “«” according to custom style.

Let the associatot(l, m) ofl, m € C*°(P) be an operator
a(l,m) : I'o(Ex) = To(Ex),
al,m)s=(xDxm—sx(xm) (s € I'w(€x)).

Then we have a relation between associativity and curvature.

Proposition 4.7. On I',(Ex) and forl, m € C°°(P), the following equation holds
a(lv m) - a(mv l) = RXI,Xm,
where R is the curvature &fy with respect to D defined by

Ryz =[Dy,Dz] — Diyz1 (Y, Z € X(P)).

5. A sectional representation of Hilbert C*-modules

Let us summarize our notations. L¥tbe a HilbertC*-module over a unital"*-algebra
A, K, (P) the image of the Gel'fand representationvandfx = (€x, I1x, P) the atomic
bundle ofX. For the mapPx defined in(3.7), define a linear map

(Px)s : (X xP) = I(Ex), ((Px)«(s))(p) = Px(s(p), p)
selXxP),peP).
We define a subspadé, of I'(€y) as follows.

Definition 5.1.
I'x = (Px)«(Icons(X % P)),

wherelcons{ X x P) is the subspace df(X x P) consisting of all constant sections.

Remark 5.2. I'x is quite smaller that the set of all holomorphic sectiong pf Actually,
we shall see imTheorem 5.8hat the hermitian form, restricted idx has values itiC, (P).

We prepare some lemmata for the proof of the reconstruction theorem and explain how
the structure of Hilber€*-module is interpreted as the geometrical structure of the atomic
bundle.

For& € X, we define a sectios € I'(Ex) of Ex by

se(p) =[Elp, (0 €P).
Define the map

X - I[Ey), WE) =s: (E€X).
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Lemma5.3. The map? is well defined and has the following properties

(i) wisalinearisometry
(ii) foreaché € X, W(§) € I'o(Ex) and is holomorphic
(i) W) * fa=wE- A)foré e XandA € A.

Proof. For everyx € X, we have

lIsell = supp((ElENIY? = I1EEoIY2 = |1&].
peP

Hencese is bounded orP and the mar well defined and isometric. This proves (j).

(ii) Let p € P, so thatp € P, for someb € B. Choose as a representative foan
irreducible representatiof#{, ). Fix h € S(H) and, using the notations i#\.1), take a
local trivializationy, ; of the Hopf bundle atVy, Bi, Hi) with p € V. By formula(B.2)
we obtain

_o([aye y __Gn
Iy dn(p)(s:(p) = O ([31/%;; +& <pr 20+ ”Z”2)>L , h) . (5.1)

Owing to(B.3), the right-hand side db.1)is smooth with respect to= B, (p) € H;, and
hence,s is smooth atP, for eachb € B. For pg € Pp, we can choosgg € S(H,) such
that

po = (holmp(-)ho).
ThenpBp,(po) = 0. According to the proof ofemma B.1 we have

(828017 (€18)) (2 + o))
T+ [zl)2

for z = Bny(p), p € Vi,. For an anti-holomorphic tangent vectoof Py, we have

= Y
Ay (p)(sz(p)) = O (I:_‘Epz(l:_—ﬁnz)} h) ,
o

from which follows:

376 (0) (s£(0))|.=0 = 0.

We see that the anti-holomorphic derivativespizanishes at each point #,. Hences; is
holomorphic.
(iii) Let A € A. Forb € B andpg € Py, take a chartVy, 8, H,) at pg, whereh is a
unit vector inH and(#, ) is a representative @t Then forz € H;,, we have
((z+ h)|m(A)(z + h))
1+ 12012

Then the representatioY{}A of the Hamiltonian vector fiel& ¢, at (Vy, B, Hy) is

(eldno(0)(se(p))) =

(faoBH) =

(X" ). = —V=L(A) @ + h) — (hIT(A) (& + 1)) (2 + )
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forz e Hh. If we takeh such thafB;, (pg) = 0, then it holds that
)o = —V/=1(m(A)h — (h|m(A)h)D).

The connectiorD satisfies

(VI(Dx 7, $)(0)) po = 0o ({v]5(-)) o) (X 14)
forv e Ej, s € I'no(Ex). Hence we have

(Dx , 5¢)(po) = [§ax ;, .0l oo
whereay 4.0 € A satisfies

n(ax,, 0h =Xy, = —v/=1((A) — (h|m(A)h))h.
Therefore we have

x/—_l(DxfA 58)(p0) = V—=1[& - (—v/=1(A — (h|m(A)h)))] py

= [£A]po — [E] po (hIT(A)R) = s£4(p0) — s&(p0) fa(pO),

from which follows:

(s¢ % f4)(p0) = s£(p0) fa(po) + v/ —1(Dx , 5¢)(p0) = sea(po).
Therefore we obtai (&) x f4 = W(EA). O

Proposition 5.4. Any element iy is holomorphic

Proof. Foreachr € I'cons{ X x P), there ist € X such thate(p) = (&, p) for p € P. Then
selx & s(p) =[§], foreacho e P& s=W(E) & s € ¥(X).

Hencel'y = ¥(X). ThereforeProposition 5.4ollows from Lemma 5.3ii). O

Lemmabs.5.

(i) I'xisaright/C,(P)-module by thex-action defined irDefinition 4.4
(i) For the hermitian metric H o€y, let h be the restriction of H tol'x. Then the
function-valued sesquilinear form

h:I'x x I'x > C(P),
satisfies
his,s") € Ku(P) (5,5 € I'x), hs,s) =h(s',s) (s, € I'x),

h(s.9) 20 (selx), hiss*NH=hss)*f (5.5 €Tk, feKuP)),
IhGs, HIM2=lIsll (s € Iy, (5.2)

where the positivity iff5.2) means thab (s, s) is a positive-valued function oR and
the norm off (s, s) is the one defined i(.1).
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(iii) The following equation holds

bo(W(E), ¥(m) = p(&lN) (. ne X, peP).

Proof. By Proposition 5.4ve know thatl'y = ¥(X). By K,(P) = f(A) andLemma 5.3
(iii), the map is a module action. Thus (i) is verified.
(i) and (iii): Next, we have the following equations

bo(W(E), Y(E)) = Hy(sz, s¢r) = (s:(p)Isz (0))p = pUEIE)),
which proves (jii). Furthermorey((£1£')) = feey (p). Thereforey(W(§), ¥(&)) = fiee) €
K.(P). Hencel(s, s') € K,(P) foreachs, s’ € I'y. For&, ne X, A € A,
Bp(sys Se * fa) = Bplsy, sea) = p((MEA)) = (fumie) * fa) () = (b(sy, se) * fa)(p)
(by usingiii)).

Henceh(s, s’ 1) = (s, ') I fors, s’ € I'x, 1 € K,(P). The other equations in statement
(ii) follow from the property of theC*-valued inner product oX and by the proof of
Lemma 5.3(). O

Finally we come to the reconstruction theorem for Hilk&ftmodules by means of their
atomic bundle.

Theorem 5.6.

(i) Any element i’y is holomorphic
(i) I'y is a Hilbert C*-module over th&€*-algebralC, (P).
(iii) There is a Banach space isomorphigm X — Iy

X x A - X
wxf 4 v
Fx x Ku(P) - TIx,
where the horizontal arrows are module actions. Hence, under the identifigation
A= K, (P), Iy isisomorphic taX as a Hilbert4-module.
Proof. (i) is Proposition 5.4(ii) By Lemma 5.5(i), (ii) and Definition 3.1
h:Ix x I'x > Ku(P), (5.3)

is a positive definiteC*-inner product of a right, (P)-modulel'x. Hencelx is a Hilbert
C*-module over aC*-algebralC, (P).

(iif) By Lemma 5.3(i) and Proposition 5.4¥ is an isomorphism betweexiand I'y. If
we rewrite the module actiosandy of X and Iy, respectively, by

P&, A) =EA, Y(s, ) =sxI
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foré e X, A e A,s € I'y andl € K, (P), then we have
(Yo (W x NIE A =WE) * fa=sta=Wod)§, A),
by Lemma 5.3iii). Hence we obtain:
VoW x f=Wodp.

Therefore the diagram in the statement (i) is commutative. O
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Appendix A. The Hopf bundle over a Hilbert space

We recall some facts about the Hopf bundle over a Hilbert spaead its associated
bundle. Note we dootassume din < oo.

A.1. Definition

We denoteH a Hilbert space ove€ with dim# > 1. Define
SH)={zeH: |zl =1}, P(H) = (H\{0}))/C*".

We call S(H) and P(H) a Hilbert sphereand a projective Hilbert spacever H, re-
spectively. We denote an element B{#) by [z] for z € H \ {0}. It is well known
that S(#) is a submanifold ofH, in the relative topology. We giv@(#) the quotient
topology from# \ {0} C H by the natural projection. Define a projectipnfrom S(#)

to P(H) by

n:S(H) — P(H), n) =[z] (z€SH)).

We call (S(#), u, P(H)) the Hopf(fiber) bundle overX. Clearly,..~1([z]) = S for each
[z] € P(H).
We define local trivial neighborhoods of the Hopf bunfig Fix 4 € S(#) and define

Vi ={lz] € P(H) : (hlz) # O}, Hp={zeMN:(hlz) =0},

BriVi— My BliD=———h (2] V.
(h|z)

Then{(Vn, Bn, Hn)}lnesa is a holomorphic atlas foP(). As well known, P(H) is a
Kéahler manifold[3].
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Let vy, be the local trivializing neighborhoods f6t#) atV;, defined by

)T ) =V X UQ),  vn2) = (2], #r(2)),

_ fzlh) 1
on(z) = e (z e u (W),
-1 _{hlz)
v, ([Z],g)=z|<hlz>|g ([z] € Vi, g € U(D)).

Hence{V}nesa is a system of local trivial neighborhoods (), i, P(H)). Let R be
the right action of/(1) on S() defined by

S(H) x U(D) — S(H); (z,c)> z-¢c= R,z =cz.

Then the following conditions are satisfied: (iYR.z) = u(z), (ii) R is free, that is, if
R.z = z, thenc = 1, (iii) for eachh € S(H):

(z|h)
[(h|z)]

Hence(S(H), i, P(H)) is a principalU(1)-bundle.

On(Rez) =

c (zeSH),ceUW)).

LemmaA.l. Leth, h’ € S(H) withV, NV, # @. For z, X € Hy, we have

—1 - h+z Y.
B o B @) = o —
(r'1X)

1
—1 . _
3 (B 0 B, )(X) = (h,|h+z>x (h'|h+z>2(h+z)'

Definition A.2. We denote by, the local section
2p([z) = ¢n(2z (2] € V).

By definition, (h|$2;,(0)) > 0 for p € V.

A.2. Transition functions

Leth, i’ € S(H) with ' € V,, then the transition functio®,, : V, NV, — UQ) is

(zlh') (hlz)

Quen =D = T Ty

Fact A.3.

(i) Onn([z]) = 1for[z] € V.
(i) If b, i’ € S(H) satisfy(i'|h) # O, thenQp, = Oy -
(iii) If A, ', h"” € S(H) are mutually non-orthogonal, then

Oy ([2D) - Own([2D) = Qurn([zD)  ([z] € Ve NV N V).
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LemmaA.4. Let X be a tangent vector #(H) at p € V;, NV, which is realized irf{;,
and gy (p) = z. Then

e LRI
az(Qh/h OIBh/ )(X) = 2 |<h|Z+h/)|3 .

Proof. The statement is proved by a simple computation. O

LemmaA.5. In the notation oLemma A.4we have:

(Qun 0 5 W) - 3u(Q;E 0 prH(x) = — 2 X
h'h h w h'h h’ - 2(h|w+h’).
Proof. By Lemma A.4and the definition oD, the statement follows easily. O

A.3. Associated bundles of Hopf bundles

Let F be aC*°-manifold with a leftU(1)-actione andS(#) x F the direct product space
of S(H) and F. Define a rightU(1)-actiony on S(#) by

2Ve=cz (ceUQ),ze SH)).

We defineS(H) xy) F as the set of alU(1)-orbits inS(H) x F, where thel/(1)-action
is defined by

@ Ne=G@ye.a@f)y  (ceUD), (2 f) € S(H) x F).

The topology ofS(H) xy) F is induced fromS(#H) x F by the natural projectiom :
S(H) x F — S(H) xy F. We denote the element §t{H) x (1) F containing(x, f) by
[(x, H]. Define a projection

7r S(H) xy@ F — P(H), mr([(x, HD = pnx).

The fibrationF = (S(H) xyq) F, nr, P(H)) is calledthe associated bundle ¢§(#), u,
P(H)) by F. Forh € S(H), define a maghy . : 772(Vi) — Vi x F by

Yo n [z, HD = (@), dan [z, HD) = (U(2), () - (A.1)
We have
vz, H = [(z,a< ) )f)} (([z], /) € Vu x ).
oh [(hlz)]

The definition ofy, , is independent of the choice ¢f, f). Hencey, ; is a local trivial-
ization of F atV;,. The transition function o, NV, x F is therefore

Qv = Vau 0 ¥y : (2], H > (2], «(Quin([2)) .

If Fisacomplex vector space, then the natiirél)-actiona is the scalar multiplication.
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A.4. Recovery of the typical fiber

Let (S(H), u, P(H)) be a Hopf bundle and a complex Hilbert space. We consider the
associated bundI&(?) x ) F which is done w.r.t. the natural action &{1) on F.
Proposition A.6. There is the following equivalence of fiber bundlesRif):

(S(H) xuay F) xpay S(H) = S(H) x F.
Proof. Let X1 be the l.h.s. in the above statement. We note that any elem&ntisfvritten

as([(h, v)], h), where [h, v)] € S(H) xy) F becauserg([(h, v)]) = n(h) and we can
choose the phase factor @f, v) according taz. Let

7r X1 —> PH), ar([(h, v)], h) = h.
Define
D:X1— S(H) x F, O([(h,v)], h) = (h, v).
Thena is well defined and bijective. Furthermore
(nr o @)([(h, V)], h) = up(h,v) = h = ap([(h,v)], h).
Thereforeur o @ = 7p and (@, id) is a bundle map betweeXi; and (S(H) x F, ur,
P(H)). O

Proposition A.7. Leta be a transitive action of a group G &ftH) and consider the action
&= (axyw D xpm) o,
of G on X1 = (S(H) xy) F) xpa) S(H). Then the quotient; of X1 w.r.t. the actionx
is canonically identified with the linear space F
Proof. For [x] = [([(h, v)], B)] € Y1, [x] = {([(agh, V)], azh) : g € G}. Hence we can
take the quotien® to the bijection
®: Y1 — S(H) x F, ?([x]) = [PW)]. O

A.5. Connections on an associated bundle of a Hopf bundle

LetF = (S(H) xyq F, nr, P(H)) be an associated vector bundle of a Hopf bundle
(S(H), u, P(H)) by a complex Hilbert spack. Let I'(F) be the set of all smooth sections
of F, that is the set of right inverses of the projection By the standard operations(F)
is a complex linear space.

Definition A.8. D is connection orf if D is a bilinear map of complex vector spaces
D : X(P(H)) x I'(F) — I(F) which is C*°(P(H))-linear with respect t&(P(H)) and
satisfies the Leibniz law with respect igF):

Dy(s-1) =0yl-s+1-Dys (se I(F),l € C*(P(H))Y € X(P(H))).
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ForY € X(P(H)), h € S(H) andp € V}, we denote bwg the corresponding tangent
vector atp in a local chart. Assume that a connectibron F can be written a8 + A. Then
Dy = dy + Ay is alinear map o (F). If Dy|Z is the local expression dby on the local
trivial chart w.r.t.h € S(H) andp € V;, then we obtain families of linear maps

A})',’p :F = F,
such thady |, + A}, = 0y + Ay)l = (3 + A},

Fact A.9. The family{A*{,, } is the local expression of a connectibn= d + A onF if and
only if the following equality is satisfied:

W 1 (n|Y) n
whereY is a holomorphic tangent vector f(#) at p which is realized or#{;, andz =

B (0).

Proof. By Leibniz rule and.emma A.5 we obtain the formula directly. O

Appendix B. Lemma for the main theorem

We prepare some equations for the main theorempFer/,, define a vector in?’;) in
H; by

oh Br(p) +h

P VI 1B I

Assume thafp = w, o 7}, for x € H,, x| = 1. Then k] = [£2/] and (h|£2}) > O.
Let s be a section i (€x) such that for eacly € Py, there is§, € X which satisfies
s(p) = [£p]p € Ex,p. Letz = B (p) for h € S(H;,) such thaf € V.

LemmaB.l. Lety, , be asin(A.1). Then the following equations hold
(2 175 ((8'160)) (2 + 1)

(elan(s(0)) = (e =0(§1y. h) € FY), (B.1)
1+ izl
(P G(P) = O [ayé e (Kh —&)} h (B.2)
PR 241121 )], )
whereK?, | € Ais defined by
(K ) (h+72) =Y, (B.3)

and[dy&,], € Ex., is defined by

([nlpl[8vEpl) o = P(By (nlE,))

for [n], € £x.p-
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Proof. Letgy, @ (IT%)~1(Vy) — F% be the map defined by

Va,n(X) = (ub(h), pa,n(x)).
Fore = O([&], h) € F% such that € 1, *(p), we have

(20 |7 ((E'15p)) (2 + )

(elgan(s(p)) = (O(E ]y, INIO(E],, ) = W
Z

From this we get

(20 |7 Dy (£ 18D @ + ) (2l (€ 1E)Y)

+
Vi+lzl2 Vi+lzl?

(28 |7 ((E'15p)) (2 + M) (2] Y)

2(y1+11zl1%3

(eldydn(p)(s(p))) =

Hence we obtain

B . R )}
aym(p)(s(p))—0<[ay5p+5p(1<y CTERETES p”’)' O (B.4)
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